K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: x>0; x<>9

b: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{3\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{3\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+2}\)

\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+2}\)

a: ĐKXĐ: x>0; x<>9

b: \(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right):\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}}{2\sqrt{x}+4}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)

c: Để D<-1 thì D+1<0

\(\Leftrightarrow-3\sqrt{x}+2\sqrt{x}+4< 0\)

\(\Leftrightarrow4-\sqrt{x}< 0\)

hay x>16

25 tháng 4 2017

a)C=\(\dfrac{9}{\sqrt{x}+3}\)

b)\(x>36\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

Ôn tập Căn bậc hai. Căn bậc ba

26 tháng 10 2022

a:

Sửa đề: \(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

 \(C=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{x-9}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-3\sqrt{x}-x-9}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}}{2\sqrt{x}+4}\)

\(=-\dfrac{3\sqrt{x}}{2\sqrt{x}+4}\)

b: Để C<-1 thì C+1<0

=>-3 căn x+2 căn x+4<0

=>-căn x<-4

=>x>16

19 tháng 8 2018

a , thu gọn

\(A=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3x+3}{x-9}\right]:\left[\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right]\)

\(A=\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(A=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(A=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(A=-\dfrac{3}{\sqrt{x}+3}\)

b , tự làm

19 tháng 8 2018

\(a\text{) Để biểu thức xác định }\\ \text{thì }\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\x-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

\(\text{b) }A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\\ =\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\\ =\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ =\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ =\dfrac{-3}{\sqrt{x}+3}\)

\(c\text{) Để }A\le-\dfrac{1}{3}\\ \text{thì }\Rightarrow\dfrac{-3}{\sqrt{x}+3}\le-\dfrac{1}{3}\\ \Rightarrow\dfrac{3}{\sqrt{x}+3}\ge\dfrac{1}{3}\\ \Rightarrow\dfrac{3}{\sqrt{x}+3}-\dfrac{1}{3}\ge0\\ \Rightarrow\dfrac{9}{3\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}\ge0\\ \Rightarrow\dfrac{9-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}\ge0\\ \Rightarrow\dfrac{\sqrt{x}-6}{\sqrt{x}+3}\le0\\ \Leftrightarrow\sqrt{x}-6\ge0\left(\text{Vì }\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}\ge6\\ \Leftrightarrow x\ge36\)

\(d\text{) Do }\sqrt{x}\ge0\\ \Rightarrow\sqrt{x}+3\ge3\\ \Rightarrow\dfrac{-3}{\sqrt{x}+3}\ge-1\\ \text{Dấu }"="\text{ }xảy\text{ }ra\text{ }khi:\text{ }x=0\)

Vậy..............

13 tháng 8 2021

\(\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\left(x\ge0;x\ne3;x\ne-3;x\ne9;x\ne4\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}\\ =\dfrac{3}{\sqrt{x}-2}\)

Tick hộ nha 😘

điều kiện ko cs \(x\ne\pm3\) nha bn

a: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right):\left(\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{1}{2\sqrt{x}+4}=\dfrac{-3}{2\sqrt{x}+4}\)

b: Để A<-1 thì A+1<0

\(\Leftrightarrow\dfrac{-3+2\sqrt{x}+4}{2\sqrt{x}+4}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}+1}{2\sqrt{x}+4}< 0\)(vô lý)

Vậy: \(x\in\varnothing\)

23 tháng 9 2017

a) ĐKXĐ : \(\)\(x\ge0\)

b) C=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

=\(\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

=\(\dfrac{3\sqrt{x}-x+x-9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\dfrac{2\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

=\(\dfrac{3\left(\sqrt{x}-3\right)}{\left(3+\sqrt{x}\right)\left(\sqrt{3}-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

=\(\dfrac{-3\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

c)giả sử C<-1

\(\Leftrightarrow\dfrac{-3\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+1< 0\)\(\Leftrightarrow\dfrac{-3x+9\sqrt{x}+2\left(x+\sqrt{x}-6\right)}{2x+2\sqrt{x}-12}< 0\)

\(\Leftrightarrow\dfrac{-x+11\sqrt{x}-12}{2x+2\sqrt{x}-12}< 0\)

\(\Leftrightarrow2x+2\sqrt{x}-12< 0\)

\(\Leftrightarrow\)\(2x+6\sqrt{x}-4\sqrt{x}-12< 0\)\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}+3\right)-4\left(\sqrt{x}+3\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}-4< 0\\\sqrt{x}+3< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 4\\\sqrt{x}< -3\left(voly\right)\end{matrix}\right.\)

vậy \(0\le x< 4\)khi C<-1

18 tháng 5 2018

a) Ta có:

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)

b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)

.....Chưa nghĩ ra....

c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)

Vậy Min P = 0 khi x =9.

k - kb với tớ nhia mn!