Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^5-a=a\left(a^2+1\right)\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5\left(a-1\right)\left(a+1\right)⋮5\)( 5 số nguyên liên tiếp chia hết cho 5)
=> \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮6\)
( 3 số nguyên liên tiếp chia hết cho 2 và chia hết cho 3 nên chia hết cho 6)
mà 6 .5 = 30 ; ( 6;5) = 1
=> \(a^5-a⋮30\)
=> \(a^{2020}-a^{2016}=a^{2015}\left(a^5-a\right)⋮30\)
=> \(A=\left(a^{2020}-a^{2016}\right)+\left(b^{2020}-b^{2016}\right)+\left(c^{2020}-c^{2016}\right)⋮30\)
\(M=\sqrt{\frac{\left(a^2+2020\right)\left(b^2+2020\right)}{c^2+2020}}\)
\(=\sqrt{\frac{\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)}{c^2+ab+bc+ac}}\)
\(=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}{\left(c+a\right)\left(c+b\right)}}\)
\(=a+b\) là 1 số hữu tỉ
=> M là 1 số hữu tỉ (đpcm)
Xét \(a,b>1\)
\(\Rightarrow a^{2020}+b^{2020}>a^{2018}+b^{2018}\)(loại)
Xét \(0< a,b< 1\)
\(\Rightarrow a^{2020}+b^{2020}< a^{2018}+b^{2018}\)
Xét \(a=1\Rightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}}\)
Xét \(a=0\Rightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}}\)
\(\Rightarrow\left(a,b\right)=\left(0,0;0,1;1,0;1,1\right)\)
Thế từng bộ vô cái nào lớn nhất lụm
ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.
ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.
ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.
do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.
Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\) (áp dụng Bất Đẳng Thức Cosi)
\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)
\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)
Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)
Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)
Dấu "=" xảy ra khi a=b=c
\(\hept{\begin{cases}a+b+c=6\left(1\right)\\a^2+b^2+c^2=12\left(2\right)\end{cases}}\)
(1) bình phuong trừ (2)=>ab+bc+ac=12
\(a^2+b^2+c^2\ge ab+bc+ac\)đẳng thức chỉ xẩy ra khi a=b=c
Từ (1)=> a=b=c=2
=> P=3
\(A=a^{2016}\left(a^4-1\right)+b^{2016}\left(b^4-1\right)+c^{2016}\left(c^4-1\right)\)
Xét: \(a^{2016}\left(a^4-1\right)=a^{2015}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\)
Đặt \(B=\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\)
Do \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên dương liên tiếp nên chia hết cho 6 \(\Rightarrow B⋮6\)
Mặt khác:
\(B=\left(a-1\right)a\left(a+1\right)\left[a^2-4+5\right]\)
\(=5\left(a-1\right)a\left(a+1\right)+\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)
Do \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5
\(\Rightarrow B⋮5\Rightarrow B⋮30\) (do 5 và 6 nguyên tố cùng nhau)
Hoàn toàn tương tự ta có \(b^{2016}\left(b^4-1\right)⋮30\) và \(c^{2016}\left(c^4-1\right)⋮30\)
\(\Rightarrow A⋮30\)