\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

tìm x để A= -3/...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

a) \(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\left(ĐK:x\ne-3;x\ne2\right)\)

\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)

Để \(A=-\frac{3}{4}\)

\(\Leftrightarrow\frac{x-4}{x-2}=-\frac{3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\Leftrightarrow x=\frac{22}{7}\left(tm\right)\)

Vậy \(x=\frac{22}{7}\) thì \(A=-\frac{3}{4}\)

b) \(A=\frac{x-4}{x-2}=\frac{\left(x-2\right)-2}{x-2}=1-\frac{2}{x-2}\)

Để \(A\in Z\Rightarrow\frac{2}{x-2}\in Z\Rightarrow x-2\inƯ\left(2\right)\)

Mà: \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)

=> \(x-2\in\left\{1;-1;2;-2\right\}\)

+) \(x-2=1\Rightarrow x=3\left(tm\right)\)

+) \(x-2=-1\Rightarrow x=1\left(tm\right)\)

+) \(x-2=2\Rightarrow x=4\left(tm\right)\)

+) \(x-2=-2\Rightarrow x=0\left(tm\right)\)

Vậy \(x\in\left\{0;1;3;4\right\}\) thì \(A\in Z\)

25 tháng 12 2016

A=x+2/x+3-5/(x-2)(x+3)-1/x-2

A=(x+2)(x-2)-5-x-3/(x-2)(x+3)

A=x^2-4-5-x-3/(x-2)(x+3)

A=x^2-x-12/(x-2)(x+3)

A=(x+3)(x-4)/(x-2)(x+3)

A=x-4/x-2

Để A=-3/4 thì x-4/x-2=-3/4

Từ đó suy ra (x-4)4=-3(x-2)

4x-16=-3x+6

7x=22

x=22/7

b,Do A nguyên nên x-4/x-2 nguyên(x#2)

suy ra x-4-x+2 chia hết cho x-2

nên 2 chia hết cho x-2

mà ước 2=-2;-1;1;2

nên x=0;1;3;4

4 tháng 12 2019

bn ơi cho mk hỏi tại sao lại ko nhận 3 vậy !!!

17 tháng 3 2019

a)     \(ĐKXĐ:x\ne-3;x\ne2\)

b)     \(P=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(P=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(P=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

vậy \(P=\frac{x-4}{x-2}\)

\(P=\frac{-3}{4}\) \(\Leftrightarrow\frac{x-4}{x-2}=\frac{-3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3.\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\)

\(\Leftrightarrow x=\frac{22}{7}\)

c) \(P\in Z\Leftrightarrow\frac{x-4}{x-2}\in Z\)

\(\frac{x-2-6}{x-2}=1-\frac{6}{x-2}\in Z\)

mà \(1\in Z\Rightarrow\left(x-2\right)\inƯ\left(6\right)\in\left(\pm1;\pm2;\pm3;\pm6\right)\)

mà theo ĐKXĐ:  \(\Rightarrow\in\left(\pm1;-2;3;\pm6\right)\)

thay mấy cái kia vào rồi tìm \(x\)

d) \(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)

khi \(x=3\Rightarrow P=\frac{3-4}{3-2}=-1\)

khi \(x=-3\Rightarrow P=\frac{-3-4}{-3-2}=\frac{-7}{-5}=\frac{7}{5}\)

14 tháng 11 2018

a,ĐKXĐ:\(x\ne2,x\ne-3\)

\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

\(=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x-4}{x-2}\)

c,Để A = - 3/4

thì: \(\frac{x-4}{x-2}=-\frac{3}{4}\)

\(\Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\)

\(4x-16=-3x+6\)

\(4x+3x=6+16\)

\(7x=22\)

\(x=\frac{22}{7}\)

14 tháng 11 2018

d,\(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=\frac{x-2}{x-2}-\frac{2}{x-2}=1-\frac{2}{x-2}\)

Để A nguyên thì: \(x-2\inƯ\left(2\right)\)

Ta có: \(Ư\left(2\right)=\left\{\pm1,\pm2\right\}\)

Xét từng TH:

_ x - 2 = -1 => x = 1

_ x - 2 = 1 => x = 3

_ x - 2 = -2 => x = 0

_ x- 2 = 2 => x= 4

Vậy: \(x\in\left\{0,1,3,4\right\}\)

=.= hok tốt!!

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)a ) Tìm điều kiện của x để biểu thức A có nghĩa b ) Rút gọn biểu thứ A c ) Tìm giá trị của x khi A = 0Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)+ \(\frac{9-3x}{x^2-9}\) a ) Tìm điều kiện của x để biểu thức B có nghĩa b ) Rút gọn biểu thứ B c ) Tìm giá trị của x khi B = 0Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)a ) Tìm x để...
Đọc tiếp

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)

a ) Tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thứ A 

c ) Tìm giá trị của x khi A = 0

Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)\(\frac{9-3x}{x^2-9}\)

 

a ) Tìm điều kiện của x để biểu thức B có nghĩa 

b ) Rút gọn biểu thứ B 

c ) Tìm giá trị của x khi B = 0

Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)

a ) Tìm x để biểu thức A xác định 

b ) Rút gọn biểu thức A 

c ) Tính giá trị của biểu thức A khi x = 0 , 1 , 2012

d ) Tìm các giá trị nguyên của x để A nhận giá trị nguyên 

Bài 4 : Cho biểu thức : A =\(\frac{1}{x+1}\)\(\frac{1}{x-1}\)\(\frac{2}{x^2-1}\)

a ) tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thức A 

C ) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên 

CÁC BẠN GIẢI ĐƯỢC BÀI NÀO THÌ GIẢI GIÚP MÌNH VỚI NHÉ KHÔNG NHẤT THIẾT PHẢI GIẢI HẾT ĐÂU ! BÂY GIỜ MÌNH ĐANG RẤT CẦN CÁC BẠN CỐ GẮNG NHÉ !

5
1 tháng 1 2017

Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy

Bài 4:

\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

a) DK x khác +-1

b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)

c) x+1  phải thuộc Ước của 2=> x=(-3,-2,0))

1 tháng 1 2017

1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)

                                      \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

                                       \(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

   Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa

b)  \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)

 \(=\frac{x-2}{x+2}\)       

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)             

\(\Leftrightarrow x-2=\left(x+2\right).0\)          

\(\Leftrightarrow x-2=0\)   

\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )

=> ko có gía trị nào của x để A=0

11 tháng 6 2015

ĐK: x khác -3; khác 2

a) \(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x-4}{x-2}\)

b) A=-3/4 \(\frac{x-4}{x-2}=-\frac{3}{4}\Leftrightarrow4x-16=-3x+6\Leftrightarrow7x=22\Leftrightarrow x=\frac{22}{7}\)

c) \(A=\frac{x-4}{x-2}=1-\frac{2}{x-2}\Rightarrow A\in Z\Leftrightarrow\frac{2}{x-2}\in Z\Leftrightarrow x-2\inƯ\left(1;-1;2;-2\right)\)

x-2 -12-2
x3(t/m đk)1(t/m đk)4(t/m đk)0(t/m đk)

 

d) \(x^2-9=0\Leftrightarrow x=+-3\). thay lần lượt vào A thôi

 

9 tháng 6 2015

ĐK: \(x\ne-3;x\ne2\)

a) \(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)

\(A=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)

b) \(A=-\frac{3}{4}\Leftrightarrow\frac{x-4}{x-2}=-\frac{3}{4}\Rightarrow4x-16=-3x+6\Leftrightarrow7x=22\Leftrightarrow x=\frac{22}{7}\)

c) \(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\Rightarrow A\in Z\Leftrightarrow\frac{2}{x-2}\in Z\left(1\in Z\right)\Leftrightarrow x-2\inƯ\left(2\right)\Leftrightarrow x-2\in\left\{1;-1;2;-2\right\}\)

x-21-12-2
x3(t/m đk)1(t/m đk)4(t/m đk)0(t/m đk)

=> A nguyên <=>\(x\in\left\{0;1;3;4\right\}\)

d) \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\Rightarrow\)x=3 hoặc x=-3

thay lần lượt x=3, x=-3 vào A =x-4/x-2 là ra thôi.

bài này dài làm mệt quá, bằng mình làm mấy bài khác

3 tháng 11 2017

a) \(x\ne2;-2;-4\)

b) và c) thì bạn rút gọn M rồi tính

4 tháng 11 2017

cách nhân ntn ạ 

25 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)

\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x+4}{x-3}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)

\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)

\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

c) Để \(A=\frac{3}{5}\)

\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)

\(\Leftrightarrow5x+20=3x-9\)

\(\Leftrightarrow2x+29=0\)

\(\Leftrightarrow x=-\frac{29}{2}\)

d) Để \(A< 0\)

\(\Leftrightarrow\frac{x+4}{x-3}< 0\)

\(\Leftrightarrow1+\frac{7}{x-3}< 0\)

\(\Leftrightarrow\frac{-7}{x-3}< 1\)

\(\Leftrightarrow-7< x-3\)

\(\Leftrightarrow x>-4\)

e) Để \(A>0\)

\(\Leftrightarrow\frac{x+4}{x-3}>0\)

\(\Leftrightarrow1+\frac{7}{x-3}>0\)

\(\Leftrightarrow\frac{-7}{x-3}>1\)

\(\Leftrightarrow-7>x-3\)

\(\Leftrightarrow x< -4\)