K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

a) * thay \(x=0\) vào A ta có : \(A=\dfrac{8x+13}{2x+5}=\dfrac{8.0+13}{2.0+5}=\dfrac{13}{5}\)

* thay \(x=1\) vào A ta có : \(A=\dfrac{8x+13}{2x+5}=\dfrac{8.1+13}{2.1+5}=\dfrac{8+13}{2+5}=\dfrac{21}{7}=3\)

* thay \(x=-2\) vào A ta có : \(\dfrac{8x+13}{2x+5}=\dfrac{8.\left(-2\right)+13}{2.\left(-2\right)+5}=\dfrac{-16+13}{-4+5}=\dfrac{-3}{1}=-3\)

b) ta có : \(A=\dfrac{1}{2}\Leftrightarrow\dfrac{8x+13}{2x+5}=\dfrac{1}{2}\Leftrightarrow2\left(8x+13\right)=2x+5\)

\(\Leftrightarrow16x+26=2x+5\Leftrightarrow16x-2x=5-26\Leftrightarrow14x=-21\)

\(\Leftrightarrow x=\dfrac{-21}{14}=\dfrac{-3}{2}\) vậy \(x=\dfrac{-3}{2}\) thì \(A=\dfrac{1}{2}\)

c) bài này bị thiếu đề rồi nha ; đề phải là tìm \(x\in Z\) để A nguyên

điều kiện : \(x\in Z;x\ne\dfrac{-5}{2}\)

ta có : \(A=\dfrac{8x+13}{2x+5}=\dfrac{8x+20-7}{2x+5}=4+\dfrac{-7}{2x+5}\)

ta có A nguyên \(\Leftrightarrow\dfrac{-7}{2x+5}\) nguyên \(\Leftrightarrow2x+5\) thuộc ước của \(-7\)\(\pm1;\pm7\)

ta có : * \(2x+5=1\Leftrightarrow2x=1-5=-4\Leftrightarrow x=\dfrac{-4}{2}=-2\left(tmđk\right)\)

* \(2x+5=-1\Leftrightarrow2x=-1-5=-6\Leftrightarrow x=\dfrac{-6}{2}=-3\left(tmđk\right)\)

* \(2x+5=7\Leftrightarrow2x=7-5=2\Leftrightarrow x=\dfrac{2}{2}=1\left(tmđk\right)\)

* \(2x+5=-7\Leftrightarrow2x=-7-5=-12\Leftrightarrow x=\dfrac{-12}{2}=-6\left(tmđk\right)\)

vậy \(x=-2;x=-3;x=1;x=-6\)

8 tháng 8 2017

a) với x = 0 (TM) thay vào biểu thức ta được

A =\(\dfrac{8x+13}{2x+5}\)= \(\dfrac{8.0+13}{2.0+5}\)= \(\dfrac{13}{5}\)

với x =1 (TM) thay vào biểu thức ta được

A= \(\dfrac{8x+13}{2x+5}\)= \(\dfrac{8.1+13}{2.1+5}\)= \(\dfrac{21}{7}\)= 3

với x =-2 (TM) thay vào biểu thức ta được

A =\(\dfrac{8x+13}{2x+5}\)= \(\dfrac{8.\left(-2\right)+13}{2.\left(-2\right)+5}\)= \(\dfrac{-16+13}{-4+5}\)= -3

vậy khi x= 0 thì A= \(\dfrac{13}{5}\)

khi x= 1 thì A = 3

khi x=-2 thì A= -3

b) ta có A= \(\dfrac{1}{2}\) \(\Rightarrow\)\(\dfrac{8x+13}{2x+5}\)= \(\dfrac{1}{2}\)

\(\Rightarrow\) 2( 8x+13) =1(2x+5)

\(\Rightarrow\) 16x+26=2x+5

\(\Rightarrow\)16x-2x=5-26

\(\Rightarrow\) 14x = -21

\(\Rightarrow\)x = \(\dfrac{-21}{14}\)=\(\dfrac{-3}{2}\)

vậy x = \(\dfrac{-3}{2}\)để A=\(\dfrac{1}{2}\)

c) ta có A= \(\dfrac{8x+13}{2x+5}\)= 4 - \(\dfrac{7}{2x+5}\)

để x\(\in\)z thì 2x+5 \(\in\)Ư(7)

Ư(7) = \(\pm\)1 , \(\pm\)7

lập bảng

ta có 2x+5=1\(\Rightarrow\)2x=-4 \(\Rightarrow\)x = \(\dfrac{-4}{2}\)=-2 (KTM)

2x+5 =-1 \(\Rightarrow\)2x= -6 \(\Rightarrow\)x = \(\dfrac{-6}{2}\)=-3(KTM)

2x+5 = 7\(\Rightarrow\)2x=2\(\Rightarrow\)x= \(\dfrac{2}{2}\)=1

2x+5 = -7 \(\Rightarrow\)2x= -12 \(\Rightarrow\)x = \(\dfrac{-12}{2}\)=-6(KTM)

vậy1 là giá trị cần tìm để x \(\in\)z

Câu 1: 

a: ĐKXĐ: x+5<>0

hay x<>-5

b: ĐKXĐ: x-2<>0

hay x<>2

a: \(\Leftrightarrow x\cdot\dfrac{62}{7}=\dfrac{29}{9}\cdot\dfrac{56}{3}=\dfrac{1624}{27}\)

hay \(x=\dfrac{1624}{27}:\dfrac{62}{7}=\dfrac{5684}{837}\)

b: \(\Leftrightarrow\dfrac{1}{5}:x=\dfrac{12}{35}\)

nên \(x=\dfrac{1}{5}:\dfrac{12}{35}=\dfrac{1}{5}\cdot\dfrac{35}{12}=\dfrac{7}{12}\)

c: \(\Leftrightarrow\left|2x+\dfrac{1}{3}\right|=\dfrac{30-7}{42}=\dfrac{23}{42}\)

=>2x+1/3=23/42 hoặc 2x+1/3=-23/42

=>2x=3/14 hoặc 2x=-37/42

=>x=3/28 hoặc x=-37/84

7 tháng 1 2018

dễ mà

Bài 1: 

a: =>13x+8=9x+20

=>4x=12

hay x=3

b: \(\Leftrightarrow5x-7=-8-11-3x\)

=>5x-7=-3x-19

=>8x=-12

hay x=-3/2

c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)

e: =>3x+1=-5

=>3x=-6

hay x=-2

26 tháng 6 2017

Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)

\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)

\(\Leftrightarrow7x-21=5x+25\)

\(\Leftrightarrow7x-5x=21+25\)

\(\Leftrightarrow2x=46\)

\(\Rightarrow x=46:2=23\)

b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)

\(\Leftrightarrow x^2-1=63\)

\(\Leftrightarrow x^2=64\)

\(\Rightarrow x^2=\left(\pm8\right)^2\)

\(\Rightarrow x=8\) hoặc \(x=-8\)

26 tháng 6 2017

2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)

\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)

\(7x-21=5x+25\)

\(7x-5x+25=21\)

\(2x+25=21\)

\(2x=-4\Rightarrow x=-2\)

b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)

\(7.9=\left(x+1\right)\left(x-1\right)\)

\(63=x\left(x-1\right)+1\left(x-1\right)\)

\(63=x^2-x+x-1\)

\(x^2=63+1=64\)

\(x=\left\{\pm8\right\}\)

c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)

\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)

\(x\left(x+4\right)+4\left(x+4\right)=40\)

\(x^2+4x+4x+16=40\)

\(x^2+8x=40-16=24\)

\(x\left(x+8\right)=24\)

\(x\in\left\{\varnothing\right\}\)

d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)

\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)

\(x^2-2x+2x-4=x^2+3x-x-3\)

\(\)\(x^2-4=x^2+2x-3\)

\(\Leftrightarrow x^2-x^2-2x+3=4\)

\(-2x+3=4\)

\(-2x=1\)

\(x=-\dfrac{1}{2}\)

Bài 2: 

a: \(\left(x-3\right)^2+1\ge1\)

nên \(A=\dfrac{5}{\left(x-3\right)^2+1}\le5\)

Dấu '=' xảy ra khi x=3

b: \(\left|x-2\right|+2\ge2\)

nên \(B=\dfrac{4}{\left|x-2\right|+2}\le2\)

Dấu '=' xảy ra khi x=2

18 tháng 6 2018

a) Ta có: \(\left|2x-1\right|\ge\) 0 (với mọi x)

=> \(5-\left|2x-1\right|\) ≤ 5 (Với mọi x)

Hay A ≤ 5 => Max A = 5 dấu"="xảy ra khi:

\(2x-1=0\)

<=> \(x=\dfrac{1}{2}\)

19 tháng 6 2018

Ta cos : \(\left|x-1\right|\ge0\)(với mọi x)

<=> \(\left|x-1\right|+3\ge3\)(với mọi x)

<=> \(\dfrac{1}{\left|x-1\right|+3}\ge\dfrac{1}{3}\) (với mọi x)

Hay B ≥ \(\dfrac{1}{3}\) : dấu "=" xảy ra khi : \(x-1=0\)

=> \(x=1\)