K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

 a) \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

\(=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

\(=\frac{\left(a+1\right)\left[a^2+a-1\right]}{\left(a+1\right)\left[a^2+a+1\right]}=\frac{a^2+a-1}{a^2+a+1}\)

b) Để phân số \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2+a-1}{a^2+a+1}\)

\(=\frac{\left(a^2+a+1\right)-2}{a^2+a+1}=1-\frac{2}{a^2+a+1}\)

Để phân số \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)tối giản là \(\frac{2}{a^2+a+1}\) tối giản

=> ƯCLN(2.a2+a+1)=d  \(\Rightarrow2⋮d\)

  • \(d=\pm1\)
  • \(d=\pm2\)(loại) vì d là phân số tối giản

TH1: Nếu d=1  => a2+a+1=1

                       => a2+a=0

                       => a(a+1)=0   => a=0; a=-1

TH2: Nếu d=-1  => a2+a-1=-1

                        => a2+a+2=0   (không xảy ra)

Vậy d=1

11 tháng 4 2018

D = 1 nha bạn

23 tháng 2 2017

Gọi \(d\inƯCLN\left(8n+5;6n+4\right)\)

\(\Rightarrow8n+5⋮d;6n+4⋮d\)

\(\Rightarrow3\left(8n+5\right)⋮d;4\left(6n+4\right)⋮d\)

\(\Rightarrow24n+15⋮d;24n+16⋮d\)

\(\Rightarrow\left(24n+16\right)-\left(24n+15\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\frac{8n+5}{6n+4}\) tối giản (đpcm)

16 tháng 2 2015

Gọi d là ƯCLN của (8n+5,6n+4) 

Khi đó :8n+5 chia hết cho d

6n+4 chia hết cho d

Xét hiệu :4(6n+4)-3.(8n+5) chia hết cho d

=24n+16-24n+15 chia hết cho d

=16-15 chia hết cho d

=1 chia hết cho d =>d=1 hoặc -1(dpcm)

Xong 

6 tháng 4 2017

để cm 8n+5/6n+4 là PSTG thì phải cm 8n+5 và 6n+4 là hai số nguyên tố cùng nhau

Đặt ƯCLN(8n+5,6n+4)=d (d thuộc N;d>1)

8n+5:d => 3.(8n+5):d=>24n+15:d

6n+4 :d => 4.(6n+4):d=>24n+16:d

ta có (24n+16-24n+15):d

               1:d=>d=1

vậy 8n+5/6n+4 là PSTG