K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 tháng 11 2017

4 + 4^3 + 4^5 + 4^7 + ... + 4^23

= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)

=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )

=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68

Câu 2:

1+3+3^2+3^3+....+3^2000

=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)

=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )

= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13

k mk nha lần sau mk k lại

8 tháng 11 2017

Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)

= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68

=68.(1+4^4+....+4^20) chia hết cho 68

Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)

= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13

=13.(1+3^3+....+3^1998) chia hết cho 13

29 tháng 10 2015

vì a chia hết cho 5 nên a đồng dư với 0 mod 5

suy ra a^4 đồng dư với 0^5 đồng dư với 0 mod 5(1)

vì b chia hết cho 5 nên b đồng dư với 0 mod 5

suy ra b^4 đồng dư với 0^5 đồng dư với 0 mod 5(2)

từ (1),(2) suy ra a^4-b^4 đồng dư với 0-0=0 mod 5

suy ra a^4-b^4 chia hết cho 5 (đpcm)

 

27 tháng 11 2014

sai đè rồi . phải có thêm 23mới chứng minh được chứ

12 tháng 4 2017

A = 4+42+43+...+424 ( Có 24 số hạng )

A = (4+42) + (43+44) + ... + (423+424)     ( Có 12 cặp )

A = 20 + 42.(4+42) + ... + 422.(4+42)

A = 20 + 42.20 + ... + 422.20 \(⋮\)20

\(\Rightarrow\)\(⋮\)20 (đpcm)

12 tháng 4 2017

Đặt A= 4+42+43+...+423+424

​=> 4A= 4​2+43+44+...+424+425

=> 4A-A = 425​ - 4

​=> 3A = 425​ - 4

​=> A = ( 4​25​ - 4) : 3

21 tháng 2 2016

a-2:3 => a-2+3:3 =>a+1:3

a-4:4 => a-4+5:5 => a+1:5

a-6:7 => a-6+7:7 => a+1:7

Vậy a+1 là bọi của 3,5,7

a nhỏ nhất nên a+1 nhỏ nhất

a+1 là BCNN(3;5;7)=105

a=104

2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4

Ta có cd chia hết cho 4 nên abcd chia hết cho 4

Câu b tương tự

11 tháng 6 2016

Ta có: 3A = 3^2 + 3^3 + 3^4 + 3^5 +...+ 3^101

            A = 3 + 3^2 + 3^3 + 3^4 +...+ 3^100

=>  3A - A = 3^101 - 3

=>  2A = 3^101 - 3

=>  A = \(\frac{3^{101}-3}{2}\)

=>  A = \(\frac{3^{101}-1}{2}-\frac{2}{2}=\left(3^{101}-1\right).\frac{1}{2}-1\)

=>  A < B