K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Ta có : \(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)

            \(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2017}}\)

             \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{2}{2^{2016}}\right)\)

\(A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2016}}-\frac{1}{2^{2017}}\)

\(A=2-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)

Vậy A < 1 

27 tháng 4 2017

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)

\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}\)

\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)

\(A=2-\frac{1}{2^{2017}}\left(đpcm\right)\)

5 tháng 4 2022

1/2+1/2 mũ 2+1/2 mũ 3+...+1/2 mũ 100

14 tháng 5 2017

a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...

b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

Thay B vào A ta được:

\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)

Vậy....

14 tháng 5 2017

c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)

Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)

d, chắc là đề sai

e, giống câu a

6 tháng 5 2018

\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\)

\(\Rightarrow\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\left(đpcm\right)\)

6 tháng 5 2018

ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)

\(A=1-\frac{1}{2^{100}}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

1 tháng 5 2018

A= \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)\(\frac{1}{2^{100}}\).

2A= 1+ \(\frac{1}{2}\)\(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)\(\frac{1}{2^{101}}\).

2A- A=( 1+ \(\frac{1}{2}\)\(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)\(\frac{1}{2^{101}}\))-(  \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)\(\frac{1}{2^{100}}\)).

A= 1- \(\frac{1}{2^{100}}\)< 1.

=> A< 1.

Vậy A< 1.

1 tháng 5 2018

Ta có

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow2A=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+\frac{2}{2^4}+...+\frac{2}{2^{100}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

\(\Rightarrow A< 1\)

Vậy A<1 (đpcm)

22 tháng 4 2016

Tinh 2A, roi lay 2A-A se chung to dc

9 tháng 5 2018

Ta có:3.A=1+1/3+1/3^2+...+1/3^97 +1/3^98

=>3.A - A=(1+1/3+1/3^2+...+1/3^98 + 1/3^99)-(1/3+1/3^2 +1/3^3+...+1/3^98+1/3^99)

=>2.A=1-1/3^99

=>A=1/2 -1/3^99.1/2 <1/2

Vậy ... T I C K cho mình với nha

25 tháng 3 2018

          Có A = 1/2  + 1/2^2 + 1/2^3 + ......+1/2^2018

Nên 2A = 1 + 1/2 +  1/2^2 + ......+1/2^2017

Suy ra 2A - A = (1+ 1/2 + 1/2^2 +.........+1/2^2017) - (1/2 + 1/2^2 + 1/2^3 + ......+ 1/2^2^2008)

                   A = 1 - 1/2^2008

Nên 2^2008*A + 1 = 2^2008 * (1 - 1/2^2008) + 1

                              =2^2008 - 1 +1

                              =2^2008

Vậy, 2^2008*A+1 là 1 lũy thừa với cơ số tự nhiên