K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

A=(a3+a2)+(a2-1) phan ( a3+a2)+a2+(a+1)=a2(a+1)+(a+1) phan a2( a+1)+(a(a+1)+(a+1)=

(a+1(a2+a-1) phan a+1) a2+a+1)=a2+a-1 phan a2+a-1

b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )

=> a2 + a -  1 chia hết cho d

a2 + a +1 chia hết cho d

=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d 

=> d = 1 hoặc d = 2

Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2

=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ

=> d không thể = 2

Vậy d = 1 => đpcm

a2 nghi la: \(a^2\)

29 tháng 3 2016

A=(a3+a2)+(a2-1) phan ( a3+a2)+a2+(a+1)=a2(a+1)+(a+1) phan a2( a+1)+(a(a+1)+(a+1)=

(a+1(a2+a-1) phan a+1) a2+a+1)=a2+a-1 phan a2+a-1

b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )

=> a2 + a -  1 chia hết cho d

a2 + a +1 chia hết cho d

=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d 

=> d = 1 hoặc d = 2

Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2

=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ

=> d không thể = 2

Vậy d = 1 => đpcm

a2 nghi la: \(a^2\)

19 tháng 11 2019

Toán học is my best:)) nâng cao chỗ nào bạn ?

\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)

\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

P/s : Lê Đức Anh làm tắt thế !

19 tháng 11 2019

a5 + 2-1?????
a5+ 2+2+1?????

5 tháng 3 2017

\(giải:\)\(a,\)

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)\(=\frac{a^3+a^2+a^2-1}{a^3+2a^2+2a+1}\)

                                                   \(=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

                                                    \(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

                                                     \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}\)

                                                      \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

                                                       \(=\frac{a^2+a-1}{a^2+a+1}\)

\(b,\)gọi d là \(ƯCLN\left(a^2+a-1,a^2+a+1\right)\)

\(\Rightarrow a^2+a-1⋮d\) và \(a^2+a+1⋮d\)

\(\Rightarrow\left(a^2+a-1\right)-\left(a^2+a+1\right)⋮d\)

\(\Rightarrow-2⋮d\)hay\(2⋮d\)

mà \(a^2+a+1=\left(a^2+a\right)+1=a\left(a+1\right)+1\)

mà a(a+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 => a(a+1) là một số chẵn => a(a+1)+1 là một số lẻ

=> a(a+1)+1 không chia hết cho 2 hay \(a^2+a+1\)ko chia hết cho 2

\(\RightarrowƯCLN\left(a^2+a-1,a^2+a+1\right)=1\)

\(\Rightarrow\frac{a^2+a-1}{a^2+a+1}\)là một phân số tối giản hay A là phân số tối giải(đpcm)

5 tháng 3 2017

a ) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b ) Gọi d là ƯC(a2 + a - 1; a2 + 1 + 1) Nên ta có :

a2 + a - 1 ⋮ d và a2 + a + 1 ⋮ d

=> (a2 + a + 1) - (a2 + a - 1) ⋮ d

=> 2 ⋮ d => d = { 1; 2 }

Xét a2 + a + 1 = a(a + 1) + 1 . Vì a(a + 1) là 2 số nguyên liên tiếp nên a(a + 1) ⋮ 2

=> a(a + 1) + 1 không chia hết cho 2

=> ƯC(a2 + a - 1; a2 + 1 + 1) = 1

=> \(\frac{a^2+a-1}{a^2+a+1}\) là phân số tối giản 

Hay \(A\)là phân số tối giản (đpcm)

18 tháng 3 2018

a,\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b, Gọi ƯCLN(a2+a-1;a2+a+1) = d

Ta có: \(\hept{\begin{cases}a^2+a-1⋮d\\a^2+a+1⋮d\end{cases}}\) 

\(\Rightarrow a^2+a+1-\left(a^2+a-1\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d=\left\{\pm1;\pm2\right\}\)

Lại có: \(a^2+a-1=a\left(a+1\right)-1\)

Vì \(a\left(a+1\right)\)là số chẵn => a(a+1) - 1 là số lẻ 

=> d là số lẻ

=> d không thể bằng 2 hoặc -2

=> d = {1;-1}

Vậy...

12 tháng 2 2018

 a) \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

\(=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

\(=\frac{\left(a+1\right)\left[a^2+a-1\right]}{\left(a+1\right)\left[a^2+a+1\right]}=\frac{a^2+a-1}{a^2+a+1}\)

b) Để phân số \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2+a-1}{a^2+a+1}\)

\(=\frac{\left(a^2+a+1\right)-2}{a^2+a+1}=1-\frac{2}{a^2+a+1}\)

Để phân số \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)tối giản là \(\frac{2}{a^2+a+1}\) tối giản

=> ƯCLN(2.a2+a+1)=d  \(\Rightarrow2⋮d\)

  • \(d=\pm1\)
  • \(d=\pm2\)(loại) vì d là phân số tối giản

TH1: Nếu d=1  => a2+a+1=1

                       => a2+a=0

                       => a(a+1)=0   => a=0; a=-1

TH2: Nếu d=-1  => a2+a-1=-1

                        => a2+a+2=0   (không xảy ra)

Vậy d=1

11 tháng 4 2018

D = 1 nha bạn