\(\frac{2n+2}{2n-4}\) với n thuộc N

a) Với giá trị nào của n thì...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

a) Để A là một phân số 

=> 2n-4 khác 0

=>2n khác 4

=> n khác 2

Vậy n khác 2 và n thuộc n thì A là một phân số .

b) Để A là số nguyên

=>2n+2 chia hết cho 2n-4

=>2n-4+6 chia hết cho 2n-4

Vì 2n-4 chia hết cho 2n-4

=> 6 chia hết cho 2n-4

=> 2n-4 thuộc Ư(6)

=> 2n-4 thuộc tập hợp 1;2;3;6;-1;-2;-3;-6

=>2n thuộc tập hợp 5;6;7;10;3;2;1;-2

=> n thuộc tập hợp 5/2;3;7/2;5;3/2;1;-1

Vì n thuộc N => n thuộc tập hợp 3;5;1

Sau đó bạn thử lại với từng trường hợp của n rồi kết luận là n thuộc tập hợp 3;5;1

Bạn bạn ơi hãy tk cho mik nha ! Mik đang âm điểm nek . 

CHÚC CÁC BẠN HỌC THẬT TỐT ^.^

15 tháng 8 2015

a)Để A là phân số.

=>2n-4 khác 0

=>2n khác 4

=>n khác 2

Vậy n khác 2 thì A là phân số.

b)Để A là số nguyên.

=>2n+2 chia hết cho 2n-4

=>2n-4+4+2 chia hết cho 2n-4

=>(2n-4)+6 chia hết cho 2n-4

=>6 chia hết cho 2n-4

=>2n-4=Ư(6)=(-1,-2,-3,-6,1,2,3,6)

Vì 2n-4=2.(x-2) là số chẵn.

=>2n-4=(-2,-6,2,6)

=>2n=(2,-2,6,10)

=>n=(1,-1,3,5)

Vậy n=1,-1,3,5 thì A là số nguyên.

2 tháng 5 2019

a)Với mọi giá trị của \(n\in Z\) khác 0 thì A là phân số

b)\(A=2+\frac{3}{n}\)

Để A là số nguyên thì 3 chia hết cho n. Hay n thuộc Ư(3)

     Tự giải............

a) Có 2n : n

Vậy 3 : n 

Vậy n phải khác 3 

b)Có 2n : n 

=> 3 : n  thuộc { 3, -3 }

Vậy n thuộc { 3,-3 }

MK ko biết kí hiệu thông cảm nha :)))

# USAS - 12 # 

a) n=1;2;3;4

b) n=0;-2

**** nếu đúng

3 tháng 8 2017

a, A là phân số chỉ khi \(2n-4\ne0\Rightarrow n\ne2\)

b, A \(\in Z\)\(\Leftrightarrow2n+2⋮2n-4\Leftrightarrow2n-4=6\Rightarrow6⋮2n-4\)

Vì \(2n-4\)là số chẵn nên : 

\(2n-4=-6\Rightarrow2n=-2\Rightarrow n=-1\text{và }A=0\)

\(2n-4=-2\Rightarrow2n=2\Rightarrow n=1\text{và }A=-2\)

\(2n-4=2\Rightarrow2n=6\Rightarrow n=3\text{và }A=4\)

\(2n-4=6\Rightarrow2n=10\Rightarrow n=5\text{và }A=2\)

Vậy ....

16 tháng 3 2023

a) Để A là phân số thì : 2n - 4  ≠ 0=>n  ≠ 2

Vậy với n  ≠ 2 thì A là phân số

b) Ta có  A = 2 n + 2 2 n − 4 = 1 + 6 2 n − 2 = 1 + 3 n − 2

Để A là số nguyên thì 3 ⋮ n - 2 hay (n - 2) ∈ U(3)

n − 2 = 1 ⇒ n = 3 n − 2 = − 1 ⇒ n = 1 n − 2 = 3 ⇒ n = 5 n − 2 = − 3 ⇒ n = − 1

Vậy  n ∈ − 1 ; 1 ; 3 ; 5 thì A là số nguyên.

16 tháng 4 2017

 a,\(\frac{2n+3}{n}=\frac{2n}{n}+\frac{3}{n}\)\(=2+\frac{3}{n}\)

A là phân số \(\Leftrightarrow\frac{3}{n}\)không chia hết cho n

                   \(\Leftrightarrow\)3 không chia hết cho n

                   \(\Leftrightarrow\)n    \(\notin\)Ư(3)

                   \(\Leftrightarrow\)\(\notin\) {1;-1;3;-3}

Vậy A có giá trị phân số <=> n \(\notin\){1;-1;3;-3}

b, Theo câu a ta có:

\(A=2+\frac{3}{n}\)

A là số nguyên <=> \(2+\frac{3}{n}\) là số nguyên

                       <=> \(\frac{3}{n}\) là số nguyên

                       <=> \(3⋮n\)

                       <=> n \(\in\)  Ư(3)

                       <=> n \(\in\) {1;-1;3;-3}

Vậy A là số nguyên <=> n \(\in\) {1;-1;3;-3}

16 tháng 4 2017

b, A = 2n+3/n

=>1/2.A = 2n+3/2n = 2n/2n + 3/2n = 1 + 3/2n

=> 2n E Ư(3)

Mà 2n chẵn , 3 chỉ có ước lẻ 

=>  Ko có giá trị n nào phù hợp để A là số nguyên

a, Từ phần b =>

n thuộc Z để A là p/s

6 tháng 7 2017

A = \(\frac{2n+2}{2n}\) = \(\frac{2n}{2n}\) + \(\frac{2}{2n}\) = \(\frac{1}{n}\) + 1 

Để A là phân số thì n phải khác 0.

Để A là số nguyên thì n phải là ước của 1 

Suy ra n = 1 hoặc n = -1

Câu trả hay sẽ được cộng 2 điểm hỏi đáp nhớ giữ lời nhé!!!

17 tháng 4 2019

a, \(n\ne2\)

b, \(n\subset1;-1;3;5\)

18 tháng 2 2018

\(a)\) Để \(A\) là phân số thì \(2n-4\ne0\)

\(\Leftrightarrow\)\(n\ne2\)

Vậy với \(n\ne2\) thì biểu thức A là phân số .

\(b)\) Ta có : \(\left(2n+2\right)⋮\left(2n-4\right)\) thì A là số nguyên : 

\(\Leftrightarrow\)\(2n+2=2n-4+6\) chia hết cho \(2n-4\)\(\Rightarrow\)\(6⋮\left(2n-4\right)\)\(\Rightarrow\)\(\left(2n-4\right)\inƯ\left(6\right)\)

Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

Suy ra : 

\(2n-4\)\(1\)\(-1\)\(2\)\(-2\)\(3\)\(-3\)\(6\)\(-6\)
\(n\)\(2,5\)\(1,5\)\(3\)\(1\)\(3,5\)\(0,5\)\(5\)\(-1\)

Vậy \(n\in\left\{3;1;5;-1\right\}\)