Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{8x}{3-6x}\left(ĐK:x\ne\pm\frac{1}{2}\right)\)
\(=\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}:\frac{8x}{3\left(1-2x\right)}\)
\(=\frac{4x^2+4x+1-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{3\left(1-2x\right)}{8x}\)
\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{-3\left(2x-1\right)}{8x}\)
\(=\frac{-3}{2x+1}\)
b) Với mọi x thuộc ĐKXĐ mà \(A=-\frac{3}{4031}\Leftrightarrow\frac{-3}{2x+1}=\frac{-3}{4031}\Leftrightarrow2x+1=4031\Leftrightarrow x=2015\left(tm\right)\)
Vậy x=2015 thì \(A=-\frac{3}{4031}\)
Bài làm
Như đã nhắn là mình sẽ làm theo quan điểm của mình là 5/(x^2 - 1) nha
\(A=\left[\frac{3\left(x+2\right)}{2x^3+2x+2x^2+2}+\frac{2x^2-x-10}{2x^3-2-2x^2+2x}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2x+2}-\frac{3}{2x-2}\right]\)
\(A=\left[\frac{3\left(x+2\right)}{2x^2\left(x+1\right)+2\left(x+1\right)}+\frac{2x^2+4x-5x-10}{\left(2x^3-2x^2\right)+\left(2x-2\right)}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{2x\left(x+2\right)-5\left(x+2\right)}{2x^2\left(x-1\right)+2\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{\left(2x-5\right)\left(x+2\right)}{\left(2x^2+2\right)\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}+\frac{\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3\left(x-1\right)}{2\left(x^2-1\right)}-\frac{3\left(x+1\right)}{2\left(x^2-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)+\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10}{2\left(x^2-1\right)}+\frac{3x-3}{2\left(x^2-1\right)}-\frac{3x+3}{2\left(x^2-1\right)}\right]\)
\(A=\left[\frac{\left(x+2\right)\left[3x-3+\left(2x-5\right)\left(x+1\right)\right]}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10+3x-3-3x-3}{2\left(x^2-1\right)}\right]\)
\(A=\left[\frac{\left(x+2\right)\left(3x-3+2x^2+2x-5x-5\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\frac{4}{2\left(x^2-1\right)}\)
\(A=\frac{\left(x+2\right)\left(2x^2-8\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\cdot\frac{\left(x^2-1\right)}{2}\)
\(A=\frac{\left(x+2\right)2\left(x^2-4\right)}{2\left(2x^2+2\right)}\)
\(A=\frac{2\left(x+2\right)\left(x-2\right)\left(x+2\right)}{4\left(x^2+1\right)}\)
\(A=\frac{\left(x+2\right)^2\left(x-2\right)}{2\left(x^2+1\right)}\)
:>>> Chả biết đúng không nữa nhưng số to quá :>>
a) \(P=\frac{2}{2x+3}+\frac{3}{2x+1}-\frac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\frac{2\left(2x+1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}+\frac{3\left(2x+3\right)\left(2x-3\right)}{\left(2x+1\right)\left(2x+3\right)\left(2x-3\right)}-\frac{\left(6x+5\right)\left(2x+1\right)}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
\(=\frac{\left(4x+2\right)\left(2x-3\right)+3\left(4x^2-9\right)-12x^2-16x-5}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
\(=\frac{8x^2-8x-6+12x^2-27-12x^2-16x-5}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
\(=\frac{8x^2-24x-38}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
Check hộ mình xem nghi nghi sai sai
b) \(Q=\left(\frac{x+1}{2x-1}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
\(=\left(\frac{x+1}{2x-1}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right).\frac{4x^2-4}{5}\)
\(=\left(\frac{2\left(x+1\right)\left(x-1\right)\left(x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}+\frac{2.3\left(2x-1\right)}{2\left(x-1\right)\left(x+1\right)\left(2x-1\right)}-\frac{\left(x+3\right)\left(2x-1\right)\left(x-1\right)}{2\left(x+1\right)\left(2x-1\right)\left(x-1\right)}\right).\frac{4x^2-4}{5}\)
\(=\frac{2\left(x+1\right)\left(x^2-1\right)+12x-6-\left(2x^2+5x-3\right)\left(x-1\right)}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)
\(=\frac{2\left(x^3+x^2-x-1\right)+12x-6-2x^3-5x^2+3x+2x^2+5x-3}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)
\(=\frac{2x^3+2x^2-2x-2+20x-2x^3-3x^2-9}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)
\(=\frac{-x^2+18x-11}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{-x^2+18x-11}{\left(2x-1\right)}.\frac{2}{5}\)
\(=\frac{-2x^2+36x-22}{5\left(2x-1\right)}\)
\(3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2=2x^3-\frac{3}{2}x^2+2\)
\(2x^2-10x-3x-2x^2=26\)
-13x=26
x=-2