K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A^2-A=A\left(A-1\right)=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}=\dfrac{3\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-2\right)^2}>0\)

=>A^2>A

22 tháng 4 2018

Phần 2 tớ kh rõ đề bài bạn ạ ????Hỏi đáp Toán

7 tháng 10 2017

a. ĐKXĐ: \(x>0,x\ne1\)

A=Đề\(=\left[\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{-1}{\sqrt{x}}\cdot\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)}\)\(=\frac{-\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

Đề sai hả bạn ?

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0

\(\frac{\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+y\sqrt{y}}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}+y\sqrt{y}}{x-y}\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}^3+\sqrt{y}^3}\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}^3+\sqrt{y}^3}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\sqrt{x}+\sqrt{y}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y-x+\sqrt{xy}-y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{\sqrt{xy}-2y}{\sqrt{x}-\sqrt{y}}\right)\)

tự làm tiếp nh đến đây dễ rồi

24 tháng 9 2017

Năm 1930 có sự kiện gì và năm 1945 có sự kiện gì toán lóp 4

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)

24 tháng 10 2018

giải hộ

28 tháng 10 2022

Bài 2: 

a: =>25x=35^2=1225

=>x=49

b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

=>x=-1

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)

27 tháng 5 2018

1.Ta có : \(A=\dfrac{2}{\sqrt{x-3}}+\dfrac{1}{\sqrt{x+3}}\)

\(=\dfrac{2\left(\sqrt{x}+3\right)+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Rightarrow M=A\div B=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\div\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\times\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3}{\sqrt{x+3}}\)

Bài 2:

a: \(A=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

 \(B=\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)}{x-25}=\dfrac{\sqrt{x}}{\sqrt{x}-5}\)

b: \(P=A:B=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{\sqrt{x}}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)

\(P-1=\dfrac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{-8}{\sqrt{x}+3}< 0\)

=>P<1