Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Sửa đề: \(B=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
2: Để B<=-1/2 thì B+1/2<=0
=>-3/căn x+3+1/2<=0
=>-6+căn x+3<=0
=>căn x<=3
=>0<x<9
3: Để B là số nguyên thì \(\sqrt{x}+3=3\)
=>x=0
có phải/....
1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)
2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
Bài 1:
a: \(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{x-9}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{x-9}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
b: Để A=3/4 thì căn x+2=3
=>x=1
c: Khi x=4 thì \(A=\dfrac{2+2}{2+3}=\dfrac{4}{5}\)
1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)
không thể cm được đâu bn --> xem lại đề
2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x=1\) vậy \(x=1\)
3) +) tương tự 2)
4) a) +) điều kiện xác định : \(x>0;x\ne4\)
ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)
\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)
c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)
tương tự 2 )
\(\)
Bài 1:
a: \(A=\dfrac{\sqrt{x}+2}{2\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4+x-4\sqrt{x}+4}{2\left(x-4\right)}\)
\(=\dfrac{2x+8}{2\left(x-4\right)}=\dfrac{x+4}{x-4}\)
b: Để A=8 thì x+4=8(x-4)
=>x+4=8x-32
=>-7x=-36
hay x=36/7(nhận)
Bài 1: \(H=4\sqrt{x}-x-y+6\sqrt{y}-15=-\left(x-4\sqrt{x}+\text{4 }\right)+4-\left(y-6\sqrt{y}+9\right)+9-15=-\left(\sqrt{x}-2\right)^2-\left(\sqrt{y}-3\right)^2-2\le-2\)
Vậy H đạt gtln bằng -2 \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=9\end{matrix}\right.\)
Bài 2:
(+) \(F=\dfrac{2\sqrt{x}-5}{\sqrt{x}-4}=2-\dfrac{1}{\sqrt{x}-4}\)
\(F\in Z\Leftrightarrow\dfrac{1}{\sqrt{x}-4}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-4=-1\\\sqrt{x}-4=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\left(N\right)\\x=25\left(N\right)\end{matrix}\right.\)
Kl: x=9, x=25
(+) \(G=\dfrac{4\sqrt{x}-9}{\sqrt{x}+4}=\dfrac{4\left(\sqrt{x}+4\right)-16-9}{\sqrt{x}+4}=4-\dfrac{25}{\sqrt{x}+4}\)
\(G\in Z\Leftrightarrow\dfrac{37}{\sqrt{x}+4}\in Z\Leftrightarrow\) (tự làm tiếp nhé)
ĐK: x>0,x\(\ne4\)
a) Ta thay x=\(\dfrac{1}{4}\) vào \(A=\dfrac{6}{x+2\sqrt{x}}=\dfrac{6}{\dfrac{1}{4}+2\sqrt{\dfrac{1}{4}}}=\dfrac{6}{\dfrac{1}{4}+2.\dfrac{1}{2}}=\dfrac{6}{\dfrac{1}{4}+1}=6:\left(\dfrac{1}{4}+1\right)=6:\dfrac{5}{4}=6.\dfrac{4}{5}=\dfrac{24}{5}=4,8\)B=\(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{4-x}\)
b) Ta có M=\(\dfrac{A}{B}=A\div B=\dfrac{6}{x+2\sqrt{x}}\div\dfrac{6}{4-x}=\dfrac{6}{x+2\sqrt{x}}.\dfrac{4-x}{6}=\dfrac{4-x}{x+2\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{2-\sqrt{x}}{\sqrt{x}}\)
Ta lại có M>1\(\Leftrightarrow\dfrac{2-\sqrt{x}}{\sqrt{x}}>1\Leftrightarrow2-\sqrt{x}>\sqrt{x}\Leftrightarrow2>2\sqrt{x}\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)
Kết hợp với ĐK
Vậy 0<x<1 thì M>1
c) Ta có M\(=\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{2}{\sqrt{x}}-1\)
Vậy để \(M\in Z\) thì \(\sqrt{x}\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)
Vì \(\sqrt{x}>0\)
Nên \(\sqrt{x}\in\left\{1;2\right\}\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)
Vậy x=1 thì M\(\in Z\)
Nguyễn Việt LâmTrầNguyễn Thị Khánh Như Trương NgọcThảo Vyn Trung NguyênBonkingsaint suppapong udomkaewkanjanaPhạm TiếnKHUÊ VŨMysterious PersonThiên Hàn