K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Ta có:

\(\frac{2^2}{3^2}>\frac{2^2}{2009^2}\)

\(\frac{2^2}{5^2}>\frac{2^2}{2009^2}\)

\(\frac{2^2}{7^2}>\frac{2^2}{2009^2}\)

        .........

\(\frac{2^2}{2009^2}=\frac{2^2}{2009^2}\)

\(\Rightarrow\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}>\frac{2^2}{2009^2}+\frac{2^2}{2009^2}+\frac{2^2}{2009^2}+...+\frac{2^2}{2009^2}=\frac{2^2.1004}{2009^2}=\frac{4016}{2009^2}\)(1004 phân số \(\frac{2^2}{2009^2}\)) . Mà:

\(\frac{4016}{2009^2}< 3\)

=> A < 3

10 tháng 5 2015

A = \(1+\frac{9^{2010}}{1+9+9^2+....+9^{2009}}\)\(1+1:\frac{1+9+9^2+....+9^{2009}}{9^{2010}}\)\(1+1:\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+\frac{1}{9^{2008}}+...+\frac{1}{9}\right)\)

B = \(1+\frac{5^{2010}}{1+5+5^2+....+5^{2009}}\)\(1+1:\frac{1+5+5^2+...+5^{2009}}{5^{2010}}\)\(1+1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)

Do \(\frac{1}{9^{2010}}<\frac{1}{5^{2010}}\) ; \(\frac{1}{9^{2009}}<\frac{1}{5^{2009}}\) ;.....; \(\frac{1}{9}<\frac{1}{5}\) 

=> \(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}<\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\)

=> 1:\(\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}\right)>1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)

Vậy A > B

10 tháng 5 2015

có đúng đề không vậy 

 

 

 

 

 

18 tháng 3 2017

a) \(\frac{2}{7}:1=\frac{2x1}{7x1}=\frac{2}{7}\)

\(\frac{2}{7}:\frac{3}{4}=\frac{2}{7}x\frac{4}{3}=\frac{2x4}{7x3}=\frac{8}{21}\)

\(\frac{2}{7}:\frac{5}{4}=\frac{2}{7}x\frac{4}{5}=\frac{2x4}{7x5}=\frac{8}{35}\)

Hai câu còn lại mih k hiểu đề lắm nhé!! 

25 tháng 3 2017

cảm ơn bạn nhiều !!

mình không biết làm hai câu cuối thôi@

cảm ơn bạn lần nữa

8 tháng 5 2017

Đặt M = \(1+9+9^2+......+9^{2010}\)

\(9M=9+9^2+9^3+......+9^{2011}\)

\(9M-M=8M=9^{2011}-1\)

Đặt K = \(1+9+9^2+......+9^{2009}\)

\(9K=9+9^2+9^3+.....+9^{2010}\)

\(9K-K=8K=9^{2010}-1\)

\(\Rightarrow A=\frac{9^{2011}-1}{9^{2010}-1}\)

Đặt H=\(1+5+5^2+....+5^{2010}\)

\(5H=5+5^2+......+5^{2011}\)

\(5H-H=4H=5^{2011}-1\)

ĐẶT G = \(1+5+5^2+.......+5^{2009}\)

\(5G-G=4G=5^{2010}-1\)

\(\Rightarrow B=\frac{5^{2011}-1}{5^{2010}-1}\)

Rồi bạn so sánh sẽ ra ngay

30 tháng 4 2018

\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)

\(\Rightarrow3A-A\)=  \(\left(3+1+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{2014}}\right)\)

\(\Rightarrow2A=3-\frac{1}{3^{2014}}\)

\(\Rightarrow A=\frac{3-\frac{1}{3^{2014}}}{2}\)

\(\Rightarrow A=\frac{3}{2}-\frac{\frac{1}{3^{2014}}}{2}< \frac{3}{2}\)

Vậy  \(A< \frac{3}{2}\)

Chúc bạn học tốt !!!