Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(ĐKXĐ:x\ne-\frac{1}{2}\)
\(A=\left(x+1\right)+\frac{2}{2x+1}\) vì \(x\in Z\) nên A nguyên thì \(\frac{2}{2x+1}\) nguyên
Hay \(2x+1\) là ước của 2 . Nên :
\(2x+1=2\Rightarrow x=\frac{1}{2}\) ( loại )
\(2x+1=1\Rightarrow x=0\) ( t/m)
\(2x+1=-1\Rightarrow x=-1\) ( t/m)
\(2x+1=-2\Rightarrow x=-\frac{3}{2}\) ( loại )
Với \(x=0;x=-1\) thì A nhận giá trị nguyên
Chúc bạn học tốt !!!
a) \(M=\frac{x}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\left(x\ne\pm1\right)\)
\(\Leftrightarrow M=\frac{x}{x+1}+\frac{1}{x-1}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow M=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow M=\frac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow M=\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)
Vậy \(M=\frac{x+1}{x-1}\left(x\ne\pm1\right)\)
b) \(M=\frac{x+1}{x-1}\left(x\ne\pm1\right)\)
x-2=1
<=> x=3 (tmđk)
Thay x=3 vào M ta có: \(M=\frac{3+1}{3-1}=\frac{4}{2}=2\)
Vậy M=2 khi x-2=1
c) \(M=\frac{x+1}{x-1}\left(x\ne\pm1\right)\)
M nguyên khi x+1 chia hết cho x-1
=> x-1+2 chia hết cho x-1
x nguyên => x-1 nguyên => x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng
x-1 | -2 | -1 | 1 | 2 |
x | -1 | 0 | 2 | 3 |
ĐCĐK | ktm | tm | tm | tm |
Vậy x={0;2;3}
a) \(A=\frac{2x}{x+3}+\frac{2}{x-3}+\frac{x^2-x+6}{9-x^2}\left(x\ne\pm3\right)\)
\(\Leftrightarrow A=\frac{2x}{x+3}+\frac{2}{x-3}-\frac{x^2-x+6}{x^2-9}\)
\(\Leftrightarrow A=\frac{2x}{x+3}+\frac{2}{x-3}-\frac{x^2-x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x^2-x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x^2-6x+2x+6-x^2+x-6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{x}{x+3}\)
Vậy \(A=\frac{x}{x+3}\left(x\ne\pm3\right)\)
b) Ta có \(A=\frac{x}{x+3}\left(x\ne\pm3\right)\)
Để A nhạn giá trị nguyên thì \(\frac{x}{x+3}\)nhận gái trị nguyên
Ta có \(\frac{x}{x+3}=\frac{x+3-3}{x+3}=1-\frac{3}{x+3}\)
=> \(\frac{3}{x+3}\)nguyên thì \(1-\frac{3}{x+3}\)nguyên
=> 3 chia hết cho x+2.
x nguyên => x+3 nguyên => x+3\(\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng
x+3 | -3 | -1 | 1 | 3 |
x | -6 | -4 | -2 | 0 |
Đối chiếu điều kiện x\(\ne\pm3;x\inℤ\)
=> x={-6;-4;-2;0}
Vậy x={-6;-4;-2;0} thì A nhận giá trị nguyên
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
Hoi c ho tau moi lop 7
bạn nói j