K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)

Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)

Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)

Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0

b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Để A là số nguyên thì 6x-1 chia hết cho 3x+2

\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)

Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2

Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}

Ta có bảng

3x+2-5-115
3x-7-3-13
x\(\frac{-7}{3}\)-1\(\frac{-1}{3}\)1

Vậy x={-1;1} thì A nguyên

3 tháng 7 2024

3 tháng 7 2024

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

3 tháng 7 2024

a; A =  \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)

   A =     \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)

   A =      \(\dfrac{15}{x+2}\) +  \(\dfrac{14}{x+2}\) 

   A = \(\dfrac{29}{x+2}\) 

3 tháng 7 2024

b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)

   A  \(\in\) Z ⇔ 29 ⋮ \(x\) + 2

   \(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}

 Lập bảng ta có: 

\(x\) + 2 - 29 - 1 1 29
\(x\) -31 -3 -1 27

Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}

Vậy \(x\) \(\in\) {-31; -3; -1; 27}

  

 

 

12 tháng 4 2021

a)để A là phân số => x khác 1/2

b) Để A∈∈

=> 2x+5⋮2x−12x+5⋮2x−1

ta có : 2x-1⋮⋮2x-1

=>(2x+5)-(2x-1)⋮⋮2x-1

=>6⋮⋮2x-1

=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}

ta có bảng :

2x-11-12-23-36-6
x103232−12−122-17272−52−52

Mà A ∈∈Z

Vậy x∈∈{±±1;0;2}

c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1

để A lớn nhất

=>1−42x−11−42x−1lớn nhất

=> 2x-1<0 và 2x-1 lớn nhất

=> 2x-1=-1

=>2x=0

=>x=0

Vậy tại x =0 thì A đạt giá trị lớn nhất

7 tháng 7 2018

a) ta có \(A\ge0\)

\(\Leftrightarrow\left|x-5\right|\ge0\)

=> \(A_{min}=0\) khi và chi khi x=5

7 tháng 7 2018

b) \(B\ge0\\ \Leftrightarrow\left|5+x\right|\ge0\Leftrightarrow B_{min}=0\)

Khi và chỉ khi x=-5