K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

Khó thế

6 tháng 6 2017

ta có A=3x2-6x+5

=3(x2-2x+5/2)   = 3(x-1)2+9/2  >0

30 tháng 10 2018

Mong mọi người giúp với, mình đang cần gấp!!! Thanks

30 tháng 10 2018

a) (x+3)^2-(x-5)(x+5)-6x

= x^2+6x+9-x^2+25-6x

= 9+25

= 94

vậy...

28 tháng 1 2020

\(ĐKXĐ:x\ne-1\)

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{\left(x+1\right)\left(3x-3\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{x^3+1}\)

\(=\frac{x^3-x^2+x}{x^3+1}+\frac{3x^2-3}{x^3+1}+\frac{x+4}{x^3+1}\)

\(=\frac{x^3-x^2+x+3x^2-3+x+4}{x^3+1}\)

\(=\frac{x^3+2x^2+2x+1}{x^3+1}\)

\(=\frac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2+x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^2+x+1}{x^2-x+1}\)

Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

và \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\frac{x^2+x+1}{x^2-x+1}>0\forall xt/m\)(đpcm)

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2

7 tháng 10 2015

a) x2-6x+10

=(x^2-6x+9)+1

=(x-3)^2+1

vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0

Hay x^2-6x+10>0

6 tháng 10 2018

Để \(B=\frac{x^2-x+1}{2}>0\forall x\) thì ta cần chứng minh :

\(x^2-x+1>0\)

\(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)( đpcm )

24 tháng 2 2018

a ) \(A=x^2+6x+15\)

\(\Leftrightarrow A=\left(x^2+2.x.3+9\right)+6\ge6>0\forall x\)

=> ĐPCM

b ) \(A=\left(x+3\right)^2+6\ge6\)

Vậy GTNN của A là 6 khi x = -3.

24 tháng 2 2018

Hỏi đáp Toán