Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(3x+5=2\left(x-\frac{1}{4}\right)\)
\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)
\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)
\(\Leftrightarrow\frac{11}{2}=-x\)
\(\Leftrightarrow\frac{-11}{2}=x\)
Vậy \(x=\frac{-11}{2}\)
Bài 2:
a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)
\(\Leftrightarrow x+\frac{19}{5}=0\)
\(\Leftrightarrow x=\frac{-19}{5}\)
\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)
\(\Leftrightarrow y+\frac{2018}{2019}=0\)
\(\Leftrightarrow y=\frac{-2018}{2019}\)
\(\Rightarrow+,\left|z-3\right|=0\)
\(\Leftrightarrow z-3=0\)
\(\Leftrightarrow z=3\)
Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)
b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)
Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)
\(\Rightarrow x\inℚ\)
\(\Rightarrow+,\left|2y+4\right|\ge0\)
\(\Rightarrow y\inℚ\)
\(\Rightarrow+,\left|z-5\right|\ge0\)
\(\Rightarrow z\inℚ\)
Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.
bài 1:
a, x + |2 - x| = 6
=> |2 - x| = 6 - x (1)
=>\(\orbr{\begin{cases}2-x=6-x\\2-x=x-6\end{cases}}\Rightarrow\orbr{\begin{cases}2=6\left(ktm\right)\\x=4\left(tm\right)\end{cases}}\)
b. |x - 7| = 7
=> \(\orbr{\begin{cases}x-7=7\\x-7=-7\end{cases}\Rightarrow\orbr{\begin{cases}x=14\left(ktm\right)\\x=0\left(tm\right)\end{cases}}}\)
c, Tương tự b
bài 2:
a, Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|y+5\right|\ge0\end{cases}}\forall x,y\Rightarrow\left|x+2\right|+\left|y+5\right|\ge0\) (1)
Mà |x + 2| + |y + 5| = 0 (2)
Từ (1),(2) => \(\hept{\begin{cases}x+2=0\\y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}\)
b, tương tự a
1)
a) x + | 2 - x | = 6
\(\Rightarrow\)| 2 - x | = 6 - x
\(\Rightarrow\)\(\orbr{\begin{cases}2-x=6-x\\2-x=x-6\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}2=6\\x=4\end{cases}}\)
b) | x - 7 | = 7
x - 7 = +;- 7
\(\Rightarrow\)\(\orbr{\begin{cases}x-7=7\\x-7=-7\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=14\\x=0\end{cases}}\)
c) | x + 1 | = 5
x + 1 = +;- 5
\(\Rightarrow\)\(\orbr{\begin{cases}x+1=5\\x+1=-5\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=4\\x=-6\end{cases}}\)
2) Tự làm :v