Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2^1+2^2+.....+2^{101}\)
\(\Rightarrow2A=2\left(1+2^1+2^2+.....+2^{101}\right)=2+2^2+2^3+....+2^{102}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+.....+2^{102}\right)-\left(1+2+2^2+......+2^{101}\right)\)
\(\Rightarrow A=2^{102}-1\)
Vậy A chia hết cho 3 , 7 , 21
a ) \(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}=5^{61}\left(1+5+25\right)=5^{61}.31⋮31\)(đpcm)
b ) \(6^3+2.6^2+3^3=2^3.3^3+2^3.3^2+3^3=3^2\left(8.3+8+3\right)=3^2.35⋮35\) (đpcm)
Vậy ........
bạn tham khảo ở Câu hỏi của Đặng Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6
\(=7^{39}\left(1+7+7^2+7^3\right)=7^{39}\left[\left(1+7^2\right)+7\left(1+7^2\right)\right].\)
\(=7^{39}\left(50+7.50\right)=7^{39}.50.\left(1+7\right)=7^{39}.400\)chia hết cho 20
2100 + 2101 + 2102
= 299[2 + 22 + 23]
= 299.[2+4+8]
= 299.14
= 299.2.7
= 2100.7 chia hết cho 7
Vậy:...........