Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.
\(A=3+3^2+3^3+3^4+...+3^{2015}+3^{2016}\\\)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2015}\left(1+3\right)\)
\(A=\left(1+3\right).\left(3+3^3+...+3^{2015}\right)\)
\(A=4.\left(3+3^3+...+3^{2015}\right)\)
Suy ra : \(A⋮4\)
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản
Ta có: \(\frac{1}{n^2}<\frac{1}{n\times\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Từ điều trên, ta có: \(A<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)
\(A<\frac{1}{2}-\frac{1}{2017}\)
\(A<\frac{2015}{4034}<1\)
0<A<1 nên A không phải là số tự nhiên.
(+)Hiển nhiên A>0 vì các số hạng của A đều > 0 (1)
(+)Tổng quát: \(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
Ta có:\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)
\(\Rightarrow A<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}<1\) (2)
Từ (1);(2)
=>0<A<1
=>A ko là số tự nhiên
a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :
12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d
30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d
-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d
=> 1 chia hết cho d
vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau
=> \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Ta có:1/2^2<1/1.2; 1/3^2<1/2.3;.....
=>1/2^2+1/3^2+1/4^2+1/5^2+...+1/100^2
<1/1.2+1/2.3+1/3.4+1/4.5+....+1/99.100(bạn ghi dấu "<" ở trên cũng được)
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/99-1/100
=1/1-1/100=99/100
Mà 99/100<1
=>1/2^2+1/3^2+1/4^2+1/5^2+...+1/100^2<1(đpcm)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}=1-\frac{1}{2018}< 1\)
vì A là tổng của các số dương nên A>0(1)
A=1/2 + 1/2^2 + 1/2^3 + + 1/2^100
2A= 1 + 1/2 + 1/2^2 + ......+ 1/2^99
2A-A = 1 - 1/2^99
hay A= 1 - 1/2^99 <1 (2)
từ (1); (2) => 0<A<1 => ĐPCM. chúc hok tốt
Thanks ! Nhưng đáp án đúng thì cách trình bày có đúng k?