Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B = \(\frac{\left(a+3\right)^2}{2a^2+6a}\). \(\left(1-\frac{6a-18}{a^2-9}\right)\)
= \(\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\). \(\left(1-\frac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)
= \(\frac{a+3}{2a}\). \(\left(1-\frac{6}{a+3}\right)\)
= \(\frac{a+3}{2a}\). \(\frac{a+3-6}{a+3}\)
= \(\frac{a+3}{2a}\). \(\frac{a-3}{a+3}\)
= \(\frac{a-3}{2a}\)
b) B = \(\frac{a-3}{2a}\)= 1
\(\Leftrightarrow\)\(a-3=2a\)
\(\Leftrightarrow\)\(a=-3\)
Vậy khi B = 1 thì a = -3
a)
2a^2+6a=2a(a+3) khác 0=> a khác 0 và a khác -3
a^2-9=(a-3)(a+3) khác 0=> a khác -3 và a khác 3
tỏng hợp a \(\ne\) {-3,0,3}
b)\(B=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a^2-9\right)-6a+18}{\left(a-3\right)\left(a+3\right)}=\frac{\left(a+3\right)^2.\left(a-3\right)^2}{2a.\left(a-3\right)\left(a+3\right)^2}=\frac{a-3}{2a}\)
c)B=0\(\frac{\left(a-3\right)}{2a}=0=>a=3\Rightarrow\left(loai\right)\) kết luận ko có giá trị nào a ;B =0
d)\(B=1\Rightarrow\left(a-3\right)=2a\Rightarrow a=-3\left(loai\right)\)không có giá trị nào của a cho B=1
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
điều kiện dễ mà,mẫu phải khác 0=>điều kiện pài này là x khác 1
Ta có :
\(A=\frac{a^2+2a}{2a+10}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
a) Giá trị của biểu thức A xác định
\(\Leftrightarrow\hept{\begin{cases}a+5\ne0\\a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}}\)
Vậy để giá trị của biểu thức A xác định \(\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)
ĐKXĐ : \(\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)
b) Ta có :
\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a\left(a^2+2a\right)+2\left(a+5\right)\left(a-5\right)+50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a^3+2a^2+2\left(a^2-25\right)+50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a^3+4a^2-50+50-5a}{2a\left(a+5\right)}\)
\(A=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)
\(A=\frac{a^2+5a-a-5}{2\left(a+5\right)}\)
\(A=\frac{\left(a+5\right)\left(a-1\right)}{2\left(a+5\right)}=\frac{a-1}{2}\)
c) Thay a = -1 ( Thỏa mãn ĐKXĐ ) vào biểu thức A ta có :
\(A=\frac{-1-1}{2}=-1\)
Vậy tại a = -1 thì giá trị của biểu thức A là - 1
d) Cho A = 0 , ta có :
\(\frac{a-1}{2}=0\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)( Thỏa mãn ĐKXĐ )
Vậy a = 1 thì giá trị của biểu thức A = 0 .
\(a.ĐKXĐ:\)\(2a+10\ne0\) \(a\ne-5\)
\(a\ne0\) \(\Leftrightarrow\)\(a\ne0\) \(\Leftrightarrow\)\(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)
\(2a\left(a+5\right)\ne0\) \(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)
\(b.A=\frac{a\left(a+2\right)}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)
\(=\frac{a\left(a+2\right)a}{2a\left(a+5\right)}+\frac{\left(a-5\right)2\left(a+5\right)}{2a\left(a+5\right)}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)
\(=\frac{a^3+2a^2+\left(2a-10\right)\left(a+5\right)+5\left(10-a\right)}{2a\left(a+5\right)}\)
\(=\frac{a^3+2a^2+2a^2+10a-10a-50+50-5a}{2a\left(a+5\right)}\)
\(=\frac{a^3+4a^2-5a}{2a\left(a+5\right)}\)
\(=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)
\(=\frac{a\left(a-1\right)\left(a+5\right)}{2a\left(a+5\right)}\)
\(=\frac{a-1}{2}\)với \(x\ne0\)và \(x\ne-5\)
\(c.\)Thay \(a=-1\left(t/mđk\right)\Leftrightarrow\frac{a-1}{2}\Rightarrow\frac{-1-1}{2}\)
\(=-1\left(t/mđk\right)\)
\(d.A=0\Leftrightarrow A=\frac{a-1}{2}=0\)
\(\Rightarrow a-1=2.0\)
\(\Rightarrow a-1=0\)
\(\Rightarrow a=1\left(t/mđk\right)\)
a) B xác định
\(\Leftrightarrow\begin{cases}2a^2+6a\ne0\\a^2-9\ne0\end{cases}\Leftrightarrow\begin{cases}2a\left(a+3\right)\ne0\\\left(a+3\right)\left(a-3\right)\ne0\end{cases}\Leftrightarrow\begin{cases}a\ne0\\a\ne-3\\a\ne3\end{cases}\)
Vậy để B xác định thì \(a\ne0\) và \(a\ne\pm3\)
b) \(B=\frac{\left(a+3\right)^2}{2a^2+6a}\cdot\left(1-\frac{6a-18}{a^2-9}\right)\)
\(=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a+3\right)\left(a-9\right)}{\left(a+3\right)\left(a-3\right)}\)
\(=\frac{a+3}{2a}\cdot\frac{a-9}{a+3}\)
\(=\frac{a-9}{2a}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}2a^2+6a\ne0\\a^2-9\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a\left(a+3\right)\ne0\\\left(a-3\right)\left(a+3\right)\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a\ne0\\a-3\ne0\\a+3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a\ne3\\a\ne-3\end{matrix}\right.\)
b) \(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(1-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(\dfrac{a^2-9}{a^2-9}-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a^2-9\right)-\left(6a-18\right)}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-9-6a+18}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-6a+9}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a-3\right)^2}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{\left(a-3\right)^2}{\left(a-3\right)\left(a+3\right)}\)
\(\Leftrightarrow B=\dfrac{a+3}{2a}.\dfrac{a-3}{a+3}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)\left(a-3\right)}{2a\left(a+3\right)}\)
\(\Leftrightarrow B=\dfrac{a-3}{2a}\)