Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25\left(x+y\right)^2-16\left(x-y\right)^2\)
\(=\left(5x+5y\right)^2-\left(4x-4y\right)^2\)
\(=\left(5x+5y+4x-4y\right)\left(5x+5y-4x+4y\right)\)
\(=\left(9x+y\right)\left(x+9y\right)\)
1) \(\left[\left(a+b\right)-c\right]^2=\left(a+b\right)^2-2c\left(a+b\right)+c^2\)
\(=\left(a^2+2ab+b^2\right)-2ac-2bc+c^2\)
\(=a^2+b^2+c^2+2ab-2ac-2bc\)
2)Phần này tg tự
3)\(\left(x+y+z\right)\left(x+y-z\right)=\left(x+y\right)^2-z^2=x^2+2xy+y^2-z^2\)
m) \(\dfrac{1}{4}x^2-4x^2=\left(\dfrac{1}{2}x-2x\right)\left(\dfrac{1}{2}x+2x\right)\)
n) \(\dfrac{4}{49}-4x^2=\left(\dfrac{2}{7}-2x\right)\left(\dfrac{2}{7}+2x\right)\)
o) \(\left(x-3\right)\left(x+3\right)=x^2-9\)
\(\left(x+y\right)^3-\left(x-y\right)^3=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3=6x^2y+2y^3\)
Ta có: |x+1|>=0 với mọi x
|y+2|>=0 với mọi y
|x-y+z|>=0 với mọi x,y,z
=>|x+1|+|y+2|+|x-y+z|>=0+0+0 với mọi x,y,z
Mà |x+1|+|y+2|+|x-y+z|=0
=>|x+1|=|y+2|=|x-y+z|=0
=>x+1=y+2=x-y+z=0
=>x=-1 và y=-2 và -1-(-2)+z=0
=>x=-1,y=-2 và z=-1
a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)
\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)
\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)
b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)
\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)
=x-2y
c: \(\dfrac{x^3+y^3}{x+y}\)
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)
\(=x^2-xy+y^2\)
ta có hệ
\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\)cộng hai phương trình lại , ta có \(5x=10z\Rightarrow x=2z\Rightarrow y=3z\) thế vào M ta có
\(M=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=\frac{4-12}{4+9}=-\frac{8}{13}\)
Ta có: \(x+y=7\Rightarrow\left(x+y\right)^2=49\Rightarrow x^2+y^2+2xy=49\)
Mà: \(x^2+y^2=25\Rightarrow2xy=24\Rightarrow xy=12\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=7\left(25-12\right)=91\)
(Vì\(x+y=7;x^2+y^2=25;xy=12\))