K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

\(2M=\left(\sqrt{x^2-3x+25}-\sqrt{x^2-3x+9}\right)\)\(\left(\sqrt{x^2-3x+25}+\sqrt{x^2-3x+9}\right)\)

\(2M=x^2-3x+25-x^2+3x-9=16\)

M = 8

28 tháng 7 2019

\(a,\sqrt{x^4}=7\Leftrightarrow x^2=7\Leftrightarrow x=\pm\sqrt{7}\)

\(Dk:x\ge\frac{2}{3};\sqrt{3x-2}=4\Leftrightarrow3x-2=16\Leftrightarrow3x=18\Leftrightarrow x=6\left(tm\right)\)

\(dk:x\ge\frac{3}{2};\sqrt{2x-3}=\sqrt{x-1}\Leftrightarrow2x-3=x-1\Leftrightarrow x=2\left(tm\right)\)

\(dk:x\ge0;x-10\sqrt{x}+25=0\Leftrightarrow\left(\sqrt{x}-5\right)^2=0\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\left(tm\right)\)

\(\sqrt{2x}< 3\Leftrightarrow\sqrt{2}.\sqrt{x}< 3\Leftrightarrow0\le\sqrt{x}< \sqrt{4,5}\Leftrightarrow0\le x< 4,5\)

\(h,dk:x\ge3;\sqrt{\left(x-1\right)^2}=3x-9\Leftrightarrow\left|x-1\right|=3x-9\Leftrightarrow x-1=3x-9\left(x\ge3\right)\Leftrightarrow x=4\left(tm\right)\)

27 tháng 6 2018

a)\(\sqrt{3x+2}=2-\sqrt{3}\)

\(\Leftrightarrow3x+2=\left(2-\sqrt{3}\right)^2\)

\(\Leftrightarrow3x+2=7-4\sqrt{3}\)

\(\Leftrightarrow3x=7-2-4\sqrt{3}\)

\(\Leftrightarrow3x=5-4\sqrt{3}\)

\(\Leftrightarrow x=\dfrac{5}{3}-\dfrac{4\sqrt{3}}{3}\)

\(\Leftrightarrow x=\dfrac{5-4\sqrt{3}}{3}\)

b) \(\sqrt{x^2-4x+4}=49\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=49\)

\(\Leftrightarrow\left|x-2\right|=49\)\

\(\Leftrightarrow\left[{}\begin{matrix}x-2=49\\-x+2=49\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=51\\x=-47\end{matrix}\right.\)

27 tháng 6 2018

c) \(\sqrt{x+1}=x-1\)

ĐKXĐ: \(x-1\ge0\Rightarrow x\ge1\)

\(\Leftrightarrow x+1=\left(x-1\right)^2\)

\(\Leftrightarrow x+1=x^2-2x+1\)

\(\Leftrightarrow-x^2+2x+x=-1+1\)

\(\Leftrightarrow3x-x^2=0\)

\(\Leftrightarrow x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(lo\text{ại}\right)\\x=3\left(nh\text{ậ}n\right)\end{matrix}\right.\)

d)e) lát mình làm sau

7 tháng 8 2017

1. ĐK: \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{3x-2}\ge0\\b=\sqrt{x-1}\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(3x-2\right)\left(x-1\right)}=\sqrt{3x^2-5x+2}\\a^2+b^2=\left(3x-2\right)+\left(x-1\right)=4x-3\end{matrix}\right.\)

pt trên được viết lại thành

\(a+b=a^2+b^2-6+2ab\)

\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=3\\a+b=-2\end{matrix}\right.\)

\(\Leftrightarrow a+b=3\) (vì \(a,b\ge0\))

\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)

Đến đây thì dễ rồi, bạn bình phương 2 lần để tìm x, sau đó đối chiếu với ĐK để loại nghiệm.

2. ĐK: \(-\sqrt{17}\le x\le\sqrt{17}\)

Đặt \(\left\{{}\begin{matrix}a=x\\b=\sqrt{17-x^2}\ge0\end{matrix}\right.\)

Ta lập được hệ phương trình

\(\left\{{}\begin{matrix}a+b+ab=9\\a^2+b^2=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=9\\\left(a+b\right)^2-2ab=17\end{matrix}\right.\) (I)

Đặt S=x+y; P=xy thì

\(\left(I\right)\Rightarrow\left\{{}\begin{matrix}S+P=9\\S^2-2P=17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}S=5\\P=4\end{matrix}\right.\\\left\{{}\begin{matrix}S=-7\\P=16\end{matrix}\right.\end{matrix}\right.\)

Đến đây dễ rồi bạn làm tiếp nha

NV
10 tháng 11 2019

\(A\sqrt{3}=\sqrt{3x+6\sqrt{3x-9}}+\sqrt{3x-6\sqrt{3x-9}}\)

\(=\sqrt{3x-9+6\sqrt{3x-9}+9}+\sqrt{3x-9-6\sqrt{3x-9}+9}\)

\(=\sqrt{\left(\sqrt{3x-9}+3\right)^2}+\sqrt{\left(\sqrt{3x-9}-3\right)^2}\)

\(=\left|\sqrt{3x-9}+3\right|+\left|\sqrt{3x-9}-3\right|\)

Do \(x\ge6\Rightarrow\sqrt{3x-9}-3\ge0\)

\(\Rightarrow A\sqrt{3}=\sqrt{3x-9}+3+\sqrt{3x-9}-3=2\sqrt{3x-9}\ge6\)

\(\Rightarrow A\ge\frac{6}{\sqrt{3}}=2\sqrt{3}\)

Dấu "=" xảy ra khi \(x=6\)

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x27x+33x25x1=x22x23x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
2x+43x27x+3+3x25x1=3x6x22+x23x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

(x2)(3x22+x23x+4+23x27x+3+3x25x1)=0⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23x723≤x≤7

Phương trình đã cho tương đương với:

3x183x2+4+x67x1+(x6)(3x2+x2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

(x6)(33x2+4+17x1+3x2+x2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

x=6⇔x=6

vì với 23x723≤x≤7

thì: (33x2+4+17x1+3x2+x2)(33x−2+4+17−x−1+3x2+x−2)>0

27 tháng 6 2018

a) Đk: \(-\dfrac{1}{3}\le x\le2\)

\(\sqrt{3x+1}+\sqrt{2-x}=1\Leftrightarrow\sqrt{-3x^2+5x+2}=-x-1\)

Ta có: \(VT\ge0\) ; \(VP< 0\forall-\dfrac{1}{3}\le x\le2\)

Kl: ptvn

b) \(x^2+5x+9=\left(x+5\right)\left(\left|x\right|+9\right)\) (*)

Th1: x >/ 0

(*) \(\Leftrightarrow x^2+5x+9=\left(x+5\right)\left(x+9\right)\)

\(\Leftrightarrow x^2+5x+9=x^2+14x+45\)

\(\Leftrightarrow9x=36\Leftrightarrow x=4\left(N\right)\)

Th2: x \< 0

(*) \(\Leftrightarrow x^2+5x+9=\left(x+5\right)\left(9-x\right)\)

\(\Leftrightarrow2x^2+x-36=0\Leftrightarrow\left[{}\begin{matrix}x=4\left(L\right)\\x=-\dfrac{9}{2}\left(N\right)\end{matrix}\right.\)

Kl: x=4 , x= - 9/2

c) Đk: \(x\ge-\dfrac{1}{3}\)

\(\sqrt{3x+1}=3x+1\Leftrightarrow\sqrt{3x+1}\left(\sqrt{3x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=0\\\sqrt{3x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)

Kl: x= -1/3 , x=0

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá