K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

\(\frac{x+2+1}{x+2}-\frac{x+3+1}{x+3}=\frac{x+4+1}{x+4}-\frac{x+5+1}{x+5}\)

=> \(1+\frac{1}{x+2}-1-\frac{1}{x+3}=1+\frac{1}{x+4}-1-\frac{1}{x+5}\)

=> \(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{\left(x+4\right)\left(x+5\right)}\)

Đến đây bạn tự giải tiếp nk

8 tháng 3 2020

Xét phương trình: \(\frac{2x}{3}+\frac{2x-1}{5}=4-\frac{x}{3}\)

\(\Leftrightarrow\frac{2x}{3}+\frac{x}{3}+\frac{2x-1}{5}=4\)

\(\Leftrightarrow x+\frac{2x-1}{5}=4\Leftrightarrow\frac{5x+2x-1}{5}=4\)

\(\Leftrightarrow7x-1=20\Leftrightarrow x=3\)

Để hai phương trình \(\frac{2x}{3}+\frac{2x-1}{5}=4-\frac{x}{3}\)và \(\left(k+1\right)x+k=26\)tương đương thì:

x = 3 là nghiệm của \(\left(k+1\right)x+k=26\)

\(\Rightarrow3\left(k+1\right)+k=26\Leftrightarrow3k+3+k=26\)

\(\Leftrightarrow4k=23\Leftrightarrow k=\frac{23}{4}\)

Vậy \(k=\frac{23}{4}\)thì hai phương trình trên tương đương

20 tháng 7 2017

\(\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{x^2-9}\)

\(\Leftrightarrow\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{\left(x+3\right)^2-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{12}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow\left(x+3\right)^2-\left(x-3\right)^2=12\)

\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)=12\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9=12\)

\(\Leftrightarrow12x=12\)

\(\Rightarrow x=1\)

20 tháng 7 2017

\(\frac{x+3}{x-3}-\frac{x-3}{x+3}=\frac{12}{x^2-9}.\)

\(\Leftrightarrow\frac{\left(x+3\right)^2}{x^2-9}-\frac{\left(x-3\right)^2}{x^2-9}=\frac{12}{x^2-9}\)

\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=12\)

\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)=12\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9=12\)

\(\Leftrightarrow12x=12\)

\(\Leftrightarrow x=1\)

5 tháng 3 2020

Hướng dẫn:

Giải pt đầu tiên => nghiệm x0 (nghiệm ngày bạn tự tìm)

Thay vào pt sau: (k+1)x + k =26

Tức là (k+1) x0 +k =26 . Từ đó tìm k.

10 tháng 4 2017

1.  A = -4 phần x+2

2.  2x^2 + x = 0 => x = 0 hoặc x = -1/2

    Với x = 0 thì A = -2

    Với x = -1/2 thì A = -8/3

3.   A = 1/2 =>  -4 phần x + 2  = 1/2

                  <=> -8 = x + 2 

                   <=> x = -10

4.   A nguyên dương => A > 0

                               => -4 phần x + 2 > 0

      Do -4 < 0 nên -4 phần x + 2 > 0 khi x + 2 < 0

                                                        => x < -2