Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
OA _|_ OM (gt)
=> AOM = 90 độ
Tương tự ta có:
BON = 90 độ
b) Ta có:
BOM + MON = 90 độ
AON + MON = 90 độ
=> BOM = AON
Vì \(OA\perp OM\)( gt )
\(\Rightarrow\)\(\widehat{AOM}=90\)độ
Tương tự : \(\widehat{BON}=90\)độ
b) Vì :
\(\widehat{BOM}+\widehat{MON}=90\)độ
\(\widehat{AON}+\widehat{MON}=90\)độ
\(\Rightarrow\)\(\widehat{BOM}=\widehat{AON}\)
hay \(\widehat{NOA}=\widehat{MOB}\)
a) Ta có :
AOM + BON = 180độ
hay AON + MON + BOM + MON = 180
AON + BOM + 2MON = 180
mà AON + MON + BOM = AOB = 100độ
=> MON + 100 = 180
=> MON = 80độ
#)Giải :
A B M N E O
a)Vì \(\widehat{AOM}\) và \(\widehat{BON}\) cùng nằm trên một mặt phẳng bờ AB
\(\Rightarrow\) Hai góc này không đối đỉnh với nhau
b) Ta có : \(\widehat{AOM}+\widehat{MON}+\widehat{BON}=180^o\Rightarrow\widehat{MON}=180^o-\left(\widehat{AOM}+\widehat{BON}\right)\)
\(=180^o-\left(30^o+30^o\right)=180^o-60^o=130^o\)
Lại có : \(\widehat{MON}+\widehat{NOE}+\widehat{EOC}=180^o=130^o+30^o+30^o\)
\(\Rightarrow\) OM và OE là hai tia đối nhau
Mà \(\widehat{AOB}\) lại là góc bẹt
\(\Rightarrow\) Hai góc \(\widehat{AOM}\) và \(\widehat{BOE}\) là hai góc đối đỉnh
x x' y y' O m n
a) +) Vì Ox đối với Ox' và Oy đối với Oy' nên \(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh
\(\Rightarrow\)\(\widehat{xOy}=\)\(\widehat{x'Oy'}\)
hay \(\widehat{x'Oy'}\)\(=40^0\)
+) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)
hay \(40^0+\widehat{x'Oy}=180^0\)
\(\Leftrightarrow\widehat{x'Oy}=180^0-40^0\)
\(\Leftrightarrow\widehat{x'Oy}=140^0\)
+) Ta có: \(\widehat{xOy}+\widehat{xOy'}=180^0\) (kề bù)
hay \(40^0+\widehat{xOy'}=180^0\)
\(\Leftrightarrow\widehat{xOy'}=180^0-40^0\)
\(\Leftrightarrow\widehat{xOy'}=140^0\)
b) Vì \(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)
Mà Om là tia phân giác của góc xOy và On là tia phân giác của x'Oy' nên Om đối On (đpcm)
y m x O x' n y'
a, Vì góc x'Oy' và góc xOy là hai góc đối đỉnh, mà \(\widehat{xOy}=40^0\)nên \(\widehat{x'Oy'}=40^0\). Góc xOy và góc xOy' là hai góc kề bù nên \(\widehat{xOy}+\widehat{xOy'}=180^0\)hay \(40^0+\widehat{xOy'}=180^0\)
=> \(\widehat{xOy'}=180^0-40^0=140^0\)
Góc xOy' là góc đối đỉnh với góc xOy' nên \(\widehat{xOy}=\widehat{x'Oy}=140^0\)
b, Om,On theo thứ tự là các tia phân giác của hai góc xOy và x'Oy' nên \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)và \(\widehat{nOx'}=\widehat{mOy'}=\frac{1}{2}\widehat{x'Oy'}\)mà \(\widehat{xOy}=\widehat{x'Oy'}\), do đó \(\widehat{xOm}=\widehat{mOy}=\widehat{nOx'}=\widehat{nOy'}=\frac{1}{2}\widehat{xOy}\).
Ta có : \(\widehat{xOm}=\widehat{nOy'}=\widehat{y'Ox}=\widehat{xOm}=\widehat{y'Ox}+\widehat{xOm}+\widehat{mOy}\)
\(=\widehat{y'Ox}+\widehat{xOy}=180^0\)
Góc mOn là góc bẹt,vì thế hai tia Om,On là hai tia đối nhau
a) Ta có:
OA _|_ OM (gt)
=> AOM = 90 độ
Tương tự ta có:
BON = 90 độ
b) Ta có:
BOM + MON = 90 độ
AON + MON = 90 độ
=> BOM = AON
a) ta có \(\widehat{AOC}=\widehat{BOC}=\dfrac{1}{2}\widehat{AOB}=\dfrac{144}{2}=72^o\) (\(OC\) là tia phân giác \(\widehat{AOB}\))
ta có : \(\widehat{MOC=\widehat{CON}}=72-20=52^o\) \(\left(\widehat{AOM}=\widehat{BON}=20^o\right)\)
\(\Rightarrow\) \(OC\) là tia phân giác của \(\widehat{MON}\) \(\left(\widehat{MOC}=\widehat{CON}=52^o\right)\)(ĐPCM)
b) ta có \(\widehat{AOB'}=\widehat{B'OB}-\widehat{AOB}=180-144=36^o\)
ta có : \(\widehat{AOC}=\widehat{BOC}=72^o\) (chứng minh trên)
\(\Rightarrow\) \(\widehat{AOB'}< \widehat{AOC}=\widehat{BOC}\)
a) Ta có: OA ⊥ OM (GT)
\(\Rightarrow\widehat{AOM}=90^0\)
Ta có: OB ⊥ ON (GT)
\(\Rightarrow\widehat{BON}=90^0\)
b)
Ta có: \(\left\{{}\begin{matrix}\widehat{AON}+\widehat{NOM}=90^0\left(=\widehat{AOM}\right)\\\widehat{BOM}+\widehat{NOM}=90^0\left(=\widehat{BON}\right)\end{matrix}\right.\)
=> Góc AON = Góc BOM
THANK