Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:AB=CD (gt)
AD=BC (gt)
=> Tứ giác ABCD là hình bình hành ( tứ giác có 2 cặp cạnh đối bằng nhau là hình bình hành)
=>AB//CD( tính chất hình bình hành) và AD//BC ( tính chất hình bình hành)
Xét tam giác \(\Delta ABC\) và \(\Delta ADC\) có:
\(\begin{array}{l}AB = AD(gt)\\BC = DC(gt)\\AC\,\,\,chung\end{array}\)
Suy ra \(\Delta ABC = \Delta ADC\)(c.c.c)
Xét 2 tam giác ABC và tam giác ADC ta có :
AB = AD
BC = DC
AC chung
=> ΔABC = ΔADC
a: \(BC=\sqrt{34}\left(cm\right)\)
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó:ΔCBD cân tại C
c: Xét ΔCKA vuông tại K và ΔCHA vuông tại H có
CA chung
\(\widehat{KCA}=\widehat{HCA}\)
Do đó: ΔCKA=ΔCHA
Suy ra: CK=CH
d: Xét ΔCBD có CK/CD=CH/CB
nên HK//BD