K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

a) ĐKXD: \(x+2\ne0\)và \(x^2+4x+4\ne0\)và \(x^2-4\ne0\)và \(2-x\ne0\)

\(\Leftrightarrow x\ne-2\)và \(\left(x+2\right)^2\ne0\)và \(\left(x-2\right)\left(x+2\right)\ne0\)và \(x\ne2\)

\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

+) \(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x+2\right)^2}.\frac{\left(x-2\right)\left(x+2\right)}{-x}\)

\(=\frac{-2x+4}{x+2}\)

b) Ta có: x-1=3 <=> x=4 Thay vào A ta được:

\(\frac{-2.4-4}{4+2}=-2\)

c) 

  -2x+4 x+2 -2 -2x-4 - 8

Để \(A\in Z\Leftrightarrow8⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(8\right)=\left\{\pm1;\pm4;\pm8\right\}\)

Bạn làm nốt nha

15 tháng 12 2019

a) ĐKXĐ: x - 2 \(\ne\)0                        x \(\ne\)2

              x + 2 \(\ne\)0           =>       x\(\ne\)-2                   =>x \(\ne\)\(\pm\)2 và x \(\ne\)-10

           x2 - 4 \(\ne\)0                     x \(\ne\)\(\pm\)2

         x + 10 \(\ne\)0                 x \(\ne\)-10

b) Ta có: P = \(\left(\frac{x+5}{x-2}+\frac{3x}{x+2}-\frac{4x^2}{x^2-4}\right)\cdot\frac{x^2+2x}{x+10}\)

P = \(\left(\frac{\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x\left(x+2\right)}{x+10}\)

P = \(\left(\frac{x^2+2x+5x+10+3x^2-6x-4x^2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x\left(x+2\right)}{x+10}\)

P = \(\frac{x+10}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x\left(x+2\right)}{x+10}\)

P = \(\frac{x}{x-2}\)

c)Với x \(\ne\)\(\pm\)2 và x \(\ne\)-10

Ta có: x2 - x - 6 = 0

=> x2 - 3x + 2x - 6 = 0

=> x(x - 3) + 2(x - 3) = 0

=> (x + 2)(x- 3) = 0

=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-2\left(ktm\right)\\x=3\end{cases}}\)

Với x = 3 => P = \(\frac{3}{3-2}=3\)

25 tháng 11 2018

a, Điều kiện xác định của A là

4 - x2 \(\ne\) 0

⇒ (2 - x)(2 + x) \(\ne\) 0

\(\left\{{}\begin{matrix}2-x\ne0\\2+x\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\) (điều kiện xác định)

Rút gọn:

\(A=\dfrac{x^2+4x+4}{4-x^2}=\dfrac{\left(x+2\right)^2}{\left(2-x\right)\left(2+x\right)}=\dfrac{x+2}{2-x}\)b, Vì |x + 1| = 3

⇒ |x +1| = |\(\pm\)3|

⇒ x + 1 = \(\pm\)3

\(\left\{{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=3-1\\x=-3-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\left(\text{loại}\right)\\x=-4\end{matrix}\right.\)

Nếu x = -4

⇒ A = \(\dfrac{-4+2}{2-\left(-4\right)}\)

⇒ A = \(\dfrac{-2}{2+4}\)

⇒ A = \(\dfrac{-2}{6}\)

⇒ A = \(\dfrac{-1}{3}\)

Vậy A = \(\dfrac{-1}{3}\) khi |x + 1| = 3

c,

▲Nếu A = 2

\(\dfrac{x+2}{2-x}=2\)

⇒ x + 2 = 2.(2 - x)

⇒ x + 2 = 4 - 2x

⇒ x + 2x = 4 - 2

⇒ 3x = 2

⇒ x = \(\dfrac{2}{3}\)

Vậy A = 2 thì x = \(\dfrac{2}{3}\)

▲Nếu A = -2

\(\dfrac{x+2}{2-x}=-2\)

⇒ x + 2 = -2.(2 - x)

⇒ x + 2 = -4 + 2x

⇒ x - 2x = -4 + 2

⇒ - x = -2

⇒ x = 2

Vậy A = -2 thì x = 2

d, Để A ∈ Z

\(\dfrac{x+2}{2-x}\) ∈ Z

⇒ (x + 2) ⋮ (2 - x)

⇒ (2 + x) ⋮ (2 - x)

⇒ (2 - x + x + x) ⋮ (2 - x)

⇒ (2 - x + 2x) ⋮ (2 - x)

Mà (2 - x) ⋮ (2 - x)

⇒ 2x ⋮ (2 - x)

⇒ 2 ⋮ (2 - x)

⇒ (2 - x) ϵ Ư(2) = {\(\pm\)1; \(\pm\)2}

Ta có bảng sau

2 - x

1

-1

2

-2

x

1

3

0

4

Vậy x ∈ {1; 3; 0; 4}

25 tháng 11 2018

cảm ơn bạn ạ

10 tháng 12 2018

a)\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

A xác định

\(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\\left(x+3\right)\left(x-2\right)\ne0\\x\ne2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

Vậy A xác định \(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

b) \(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x^2-2x\right)+\left(3x-6\right)}+\frac{1}{2-x}\)

\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{x.\left(x-2\right)+3.\left(x-2\right)}+\frac{1}{2-x}\)

\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}+\frac{1}{2-x}\)

\(A=\frac{\left(x+2\right)}{\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)

\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)

\(A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{\left(x^2+3x\right)-\left(4x+12\right)}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x.\left(x+3\right)-4.\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(A=\frac{x-4}{x-2}\left(x+3\ne0\right)\)

c) \(A=-\frac{3}{4}\)

\(\Leftrightarrow\frac{x-4}{x-2}=-\frac{3}{4}\)

\(\Leftrightarrow4.\left(x-4\right)=-3.\left(x-2\right)\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow7x=22\)

\(\Leftrightarrow x=\frac{22}{7}\)

Vậy \(x=\frac{22}{7}\)

Tham khảo nhé~

17 tháng 7 2017

bạn viết rõ đề ra mới làm được

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

26 tháng 12 2019

a) Phân thức xác định khi: \(\Leftrightarrow x-3\ne3\Leftrightarrow x\ne3\)

ĐKXĐ: \(x\ne3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) Thay x = -4 vào phân thức đã thu gọn, ta có:

 \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)

Vậy: tại x = -4 là \(\frac{8}{7}\)

28 tháng 12 2019

a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)

Phân thức xác định khi: \(\left(x-3\right)\left(x+3\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-3\end{cases}}\Leftrightarrow x\ne\pm3\)

ĐKXĐ: \(x\ne\pm3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)

a: ĐKXĐ: \(x\notin\left\{1;-1;0\right\}\)

b: \(K=\dfrac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+2003}{x}\)

\(=\dfrac{x^2-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+2003}{x}=\dfrac{x+2003}{x}\)

c: Để K là số nguyên thì \(x\inƯ\left(2003\right)\)

hay \(x\in\left\{2003;-2003\right\}\)

20 tháng 12 2020

a) x2 - 5x - y2 -5y

= ( x2 - y2 ) + ( -5x - 5y)

= ( x - y ) ( x + y) - 5( x + y )

= ( x + y ) ( x - y -5)

b) x3 + 2x2 - 4x - 8

= x2 ( x + 2 ) - 4 ( x + 2 )

= ( x +2 ) ( x2 -4 )

= ( x+2)2 ( x-2)

20 tháng 12 2020

Bai 2 : 

a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)

\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)

\(=2x^2+2x+13-2x^2-2x+12=25\)

b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)

\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)

\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)