K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 6 2020

Đặt \(t=\sqrt{x-1}+\sqrt{5-x}\Rightarrow2\le t\le2\sqrt{2}\)

\(t^2=4+2\sqrt{-x^2+6x-5}\Rightarrow\sqrt{-x^2+6x-5}=\frac{t^2-4}{2}\)

BPT trở thành:

\(t+\frac{t^2-4}{2}\ge m\) ; \(\forall t\in\left[2;2\sqrt{2}\right]\) \(\Leftrightarrow m\le\min\limits_{\left[2;2\sqrt{2}\right]}f\left(t\right)\)

Với \(f\left(t\right)=\frac{1}{2}t^2+t-2\)

Ta có: \(-\frac{b}{2a}=-2\notin\left[2;2\sqrt{2}\right]\) ; \(f\left(2\right)=2\) ; \(f\left(2\sqrt{2}\right)=2+2\sqrt{2}\)

\(\Rightarrow\min\limits_{\left[2;2\sqrt{2}\right]}f\left(t\right)=2\Rightarrow m\le2\)

\(\Rightarrow m_{max}=2\)

12 tháng 5 2020

\(\sqrt{x-1}+\sqrt{5-x}=t\Rightarrow t^2=4+2\sqrt{\left(5-x\right)\left(x-1\right)}\)

\(\Rightarrow\sqrt{\left(5-x\right)\left(x-1\right)}=\frac{t^2-4}{2}\)

\(\Rightarrow t+\frac{1}{2}t^2-2\ge m\)

\(\Rightarrow\left\{{}\begin{matrix}t\ge0\\t=\sqrt{x-1}+\sqrt{5-x}\le\sqrt{\left(x-1+5-x\right)\left(1+1\right)}=2\sqrt{2}\end{matrix}\right.\)

Bất phương trình trở thành:

Tìm giá trị lớn nhất của m để \(f\left(t\right)=\frac{1}{2}t^2+t-2\ge m\) có nghiệm đúng với \(\forall t\in\left[0;2\sqrt{2}\right]\)

\(\Leftrightarrow m\le max_{\left[0;2\sqrt{2}\right]}f\left(t\right)\)

Xét hàm \(f\left(t\right)=\frac{1}{2}t^2+t-2\) trên \(\left[0;2\sqrt{2}\right]\)

Do \(-\frac{b}{2a}=-1\notin\left[0;2\sqrt{2}\right]\) nên cực trị rơi vào 2 đầu mút

\(f\left(0\right)=-2;f\left(2\sqrt{2}\right)=2+2\sqrt{2}\)

\(\Rightarrow max_{\left[0;2\sqrt{2}\right]}f\left(t\right)=f\left(2\sqrt{2}\right)=2+2\sqrt{2}\)

\(\Rightarrow m\le2+2\sqrt{2}\Rightarrow m_{max}=2+2\sqrt{2}\)

NV
9 tháng 6 2020

Sửa đề: \(\sqrt{x-1}+\sqrt{5-x}+...\)

Đặt \(\sqrt{x-1}+\sqrt{5-x}=t\Rightarrow2\le t\le2\sqrt{2}\)

\(t^2=4+2\sqrt{-x^2+6x-5}\Rightarrow\sqrt{-x^2+6x-5}=\frac{1}{2}t^2-2\)

BPT trở thành: tìm m lớn nhất để

\(t+\frac{1}{2}t^2-2\ge m\) với mọi \(t\in\left[2;2\sqrt{2}\right]\)

Xét \(f\left(t\right)=\frac{1}{2}t^2+t-2\) trên \(\left[2;2\sqrt{2}\right]\)

\(-\frac{b}{2a}=-1\notin\left[2;2\sqrt{2}\right]\)

\(f\left(2\right)=-\frac{11}{8};f\left(2\sqrt{2}\right)=2+2\sqrt{2}\)

\(\Rightarrow\min\limits_{\left[2;2\sqrt{2}\right]}f\left(t\right)=f\left(2\right)=-\frac{11}{8}\)

\(\Rightarrow\) Để \(f\left(t\right)\ge m;\forall t\in\left[2;2\sqrt{2}\right]\Leftrightarrow m\le\min\limits_{\left[2;2\sqrt{2}\right]}f\left(t\right)=-\frac{11}{8}\)

\(\Rightarrow m_{max}=-\frac{11}{8}\)

11 tháng 3 2021

undefined

11 tháng 3 2021

undefined

8 tháng 5 2017

Bất phương trình (1) :
Đkxđ: \(\left(x-1\right)\left(x-2\right)\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
Bất phương trình (2):
Đkxđ: \(\left\{{}\begin{matrix}x-1\ge0\\x-2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow x\ge2\).
Vậy hai bất phương trình không tương đương.

5 tháng 7 2021

\(\sqrt{-x^2-2x+15}\le x^2+2x+a\)

Đặt \(\sqrt{-x^2-2x+15}=b\). Vì \(x\in[-5;3]\) nên \(b\in[0;4]\)

Bất phương trình trở thành \(b\le-b^2+15+a\Leftrightarrow f\left(b\right)=-b^2-b+a+15\ge0\left(1\right)\)

Ycbt trở thành: Tìm a để BPT (1) nghiệm đúng \(\forall b\in[0;4]\)

\(\Leftrightarrow\hept{\begin{cases}f\left(0\right)\ge0\\f\left(4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+15\ge0\\a-5\ge0\end{cases}}\Leftrightarrow a\ge5\)