K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Ta có:Vì x,y,z tỉ lệ với 3,4,5 nên

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Do đó đặt:\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)

Thay vào P

\(\Rightarrow P=\frac{2017.3.k+2018.4.k-2019.5.k}{2017.3.k-2018.4.k+2019.5.k}=\frac{4028.k}{8074.k}=\frac{2014}{4037}\)

Vậy\(P=\frac{2014}{4037}\)

18 tháng 1 2020

Theo bài ra, ta có:  \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\) \(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Ta có: \(P=\frac{2017x+2018y-2019z}{2017x-2018y+2019z}=\frac{2017.3k+2018.4k-2019.5k}{2017.3k-2018.4k+2019.5k}\)

\(P=\frac{6051k+8072k-10095k}{6051k-8072k+10095k}=\frac{k\left(6051+8072-10095\right)}{k\left(6051-8072+10095\right)}=\frac{4028}{8074}=\frac{2014}{4037}\)

Ta có:Đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Thay vào đề bài

\(\Rightarrow P=\frac{2017x+2018y-2019z}{2017x-2018y+2019z}=\frac{2017.3.k+2018.4.k-2019.5.k}{2017.3.k-2018.4.k+2019.5.k}=\frac{4028k}{8074k}=\frac{2014}{4037}\)

                                                   Vậy\(P=\frac{2014}{4037}\)

28 tháng 1 2019

thay xyz=2017, ta có:

\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

\(\text{Bài làm }\)

\(\text{ Gọi xyz = 2017}\)

\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

           \(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

\(\text{# Chúc bạn học tốt #}\)

17 tháng 12 2018

nhanh nhanh các bạn cần gấp