Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{a}{b}\) < \(\frac{c}{d}\) nên ad < bc (1)
Xét tích : a(b+d) = ab + ad (2)
b(a+c) = ba + bc (3)
Từ (1);(2);(3) suy ra a(b+d) < b(a+c) do đó \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) (4)
Tương tự ta có : \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) (5)
Kết hợp (4);(5) ta được \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\)
hay x < z < y
Từ \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Ta có:\(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ad< ba+bc\)
\(\Leftrightarrow ad< bc\left(true\right)\left(1\right)\)
Chứng minh hoàn toàn tương tự ta có:
\(\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1);(2) suy ra điều phải chứng minh.
Câu hỏi của Thảo Hiền Nguyễn - Toán lớp 7 - Học toán với Online Math
Bạn tham khảo nhé :>
Vì \(\frac{a}{b}\) < \(\frac{c}{d}\) nên ad < bc (1)
Xét tích
a(b+d) = ab + ad (2)
b(a+c) = ba + bc (3)
Từ (1),(2),(3) suy ra
a(b+d) < b(a+c) do đó : \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) (4)
Tương tự ta có \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) (5)
Từ (4),(5) ta được : \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\)
Hay x < z < y