Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô-si, ta được: \(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)\(=\frac{bc\sqrt{\left(a-1\right).1}+\frac{1}{2}ca\sqrt{4.\left(b-4\right)}+\frac{1}{3}ab\sqrt{9.\left(c-9\right)}}{abc}\)\(\le\frac{bc.\frac{\left(a-1\right)+1}{2}+\frac{1}{2}ca.\frac{4+\left(b-4\right)}{2}+\frac{1}{3}ab.\frac{9+\left(c-9\right)}{2}}{abc}\)\(=\frac{\frac{1}{2}abc+\frac{1}{4}abc+\frac{1}{6}abc}{abc}=\frac{\frac{11}{12}abc}{abc}=\frac{11}{12}\)
Đẳng thức xảy ra khi a = 2; b = 8; c = 18
Ta có \(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\left(a,b,c>0\right)\)
\(\Leftrightarrow4a+4\sqrt{ab}+4\sqrt[3]{abc}=\frac{16}{3}.\)
\(\Leftrightarrow4a+2.2\sqrt{ab}+\sqrt[3]{64abc}=\frac{16}{3}.\)
\(\Leftrightarrow4a+2\sqrt{a.4b}+\sqrt[3]{a.4b.16c}=\frac{16}{3}.\)(1)
Áp dụng BDT Cauchy cho hai số dương \(a\)và \(4b\)ta được:\(2\sqrt{a.4b}\le a+4b\)(dấu bằng có \(\Leftrightarrow a=4b\))(2)
Áp dụng BDT Cauchy cho ba số dương \(a;4b\)và \(16c\)ta được:\(\sqrt[3]{a.4b.16c}\le\frac{1}{3}\left(a+4b+16c\right).\)(dấu bằng có \(\Leftrightarrow a=4b=16c\))(3)
Từ (1);(2) và (3) suy ra:
\(\frac{16}{3}\le4a+a+4b+\frac{1}{3}\left(a+4b+16c\right).\)
\(\Leftrightarrow\frac{16}{3}\le5a+4b+\frac{1}{3}a+\frac{4}{3}b+\frac{16}{3}c.\)
\(\Leftrightarrow\frac{16}{3}\le\frac{16}{3}a+\frac{16}{3}b+\frac{16}{3}c.\)
\(\Leftrightarrow\frac{16}{3}\left(a+b+c\right)\ge\frac{16}{3}.\)
\(\Leftrightarrow a+b+c\ge1\)
\(\Rightarrow MinZ=1\)
\(\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}.\\a+b+c=1\\a=4b=16c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}\)
Vậy GTNN của \(Z\)là 1 khi và chỉ khi \(a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}.\)
P/S:Trong quá trình làm dù đã rất cố gắng song khó tránh khỏi sai sót;mong bạn lượng thứ.
Áp dụng BĐT Cauchy ta được \(2\sqrt{bc}\le b+c\)=> \(\frac{a^2}{a+\sqrt{bc}}\ge\frac{2a^2}{2a+b+c}\)
Áp dụng BĐT tương tự ta được đẳng thức
\(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+c+a}+\frac{2c^2}{2c+a+b}\)
Áp dụng BĐT Cauchy ta lại có
\(\frac{2a^2}{2a+b+c}+\frac{2a+b+c}{8}\ge a;\frac{2b^2}{2b+a+c}+\frac{2b+a+c}{8}\ge b;\frac{2c^2}{2c+a+b}+\frac{2c+a+b}{8}\ge c\)
Cộng theo vế ta được
\(\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+a+c}+\frac{2c^2}{2c+a+b}\ge\frac{3}{2}\)
Vậy MinP=\(\frac{3}{2}\)
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
Đặt: \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\)
\(\Leftrightarrow xy+yz+zx=1\)
Ta có:
\(S=\frac{\frac{1}{x}}{\sqrt{\frac{1}{y}.\frac{1}{z}\left(1+\frac{1}{x^2}\right)}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{z}.\frac{1}{x}\left(1+\frac{1}{y^2}\right)}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{x}.\frac{1}{y}\left(1+\frac{1}{z^2}\right)}}\)
\(=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)
\(=\sqrt{\frac{yz}{xy+yz+zx+x^2}}+\sqrt{\frac{zx}{xy+yz+zx+y^2}}+\sqrt{\frac{xy}{xy+yz+zx+z^2}}\)
\(=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)
\(\le\frac{1}{2}.\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{z+x}+\frac{y}{z+y}\right)\)
\(=\frac{1}{2}.\left(1+1+1\right)=\frac{3}{2}\)
Dấu = xảy ra khi \(x=y=z=\sqrt{3}\)
Áp dụng BĐT Cauchy:
\(\sqrt{ab}=2\sqrt{\dfrac{a}{4}.b}\le\dfrac{a}{4}+b\)
\(\sqrt[3]{abc}=\sqrt[3]{\dfrac{a}{4}.b.4c}\le\dfrac{1}{3}\left(\dfrac{a}{4}+b+4c\right)=\dfrac{a}{12}+\dfrac{b}{3}+\dfrac{4c}{3}\)
\(\Rightarrow a+\sqrt{ab}+\sqrt[3]{abc}\le a+\dfrac{a}{4}+b+\dfrac{a}{12}+\dfrac{b}{3}+\dfrac{4c}{3}\)
\(\Leftrightarrow a+\sqrt{ab}+\sqrt[3]{abc}\le\dfrac{4}{3}\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{4}{3}\left(a+b+c\right)\ge\dfrac{4}{3}\)
\(\Rightarrow a+b+c\ge1\)
\(\Rightarrow M_{min}=1\) khi \(\left\{{}\begin{matrix}\dfrac{a}{4}=b=4c\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{16}{21}\\b=\dfrac{4}{21}\\c=\dfrac{1}{21}\end{matrix}\right.\)