Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\ge\frac{3}{2}\)( GT abc = 1 )
\(\Leftrightarrow\frac{bc}{ab+ac}+\frac{ac}{ab+ac}+\frac{ab}{ac+bc}\ge\frac{3}{2}\). Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)ta được bất đẳng thức Nesbitt quen thuộc :
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)( em không chứng minh )
Vậy ta có đpcm
Đẳng thức xảy ra <=> x = y = z <=> a = b = c = 1
Do giả thiết abc=1abc=1 nên
\dfrac{1}{a^2\left(b+c\right)}=\dfrac{bc}{a^2bc\left(b+c\right)}=\dfrac{bc}{a\left(b+c\right)}=\dfrac{bc}{ab+ac}a2(b+c)1=a2bc(b+c)bc=a(b+c)bc=ab+acbc
Đặt x=bc,y=ca,z=abx=bc,y=ca,z=ab thì x,y,z>0x,y,z>0 và bất đẳng thức cần chứng minh trở thành bất đẳng thức quen thuộc
\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}y+zx+z+xy+x+yz≥23.
Áp dụng BĐT Cauchy-Schwarz ta có:
\((ab+a+1)^2 \le (a+b+c) \left( a+ a^2b+ \frac 1c \right) = (a+b+c)(a+a^2b+ab)\)
\(\Rightarrow \dfrac{a}{(ab+a+1)^2} \ge \dfrac{a}{(a+b+c)(a+a^2b+ab)}= \dfrac{1}{(a+b+c)(1+ab+b)}\)
Thiết lập các BĐT tương tự rồi cộng theo vế ta có:
\(\sum \dfrac{a}{(ab+a+1)^2} \ge \dfrac{1}{a+b+c} \sum \dfrac{1}{ab+b+1}= \dfrac{1}{a+b+c}\)
c2: Áp dụng BĐT bunyakovsky:
\(\left(a+b+c\right)\left[\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right]\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}\right)^2\)
Xét \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)
\(=\dfrac{ab+a+1}{ab+a+1}=1\)
do đó \(\left(a+b+c\right).VT\ge1\Leftrightarrow VT\ge\dfrac{1}{a+b+c}\)
dấu = xảy ra khi a=b=c=1
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{(b+2)(c+3)}+\frac{b+2}{36}+\frac{c+3}{48}\geq 3\sqrt[3]{\frac{a^3}{36.48}}=\frac{a}{4}\)
Tương tự:\(\frac{b^3}{(c+2)(a+3)}+\frac{c+2}{36}+\frac{a+3}{48}\geq \frac{b}{4}\)
\(\frac{c^3}{(a+2)(b+3)}+\frac{a+2}{36}+\frac{b+3}{48}\geq \frac{c}{4}\)
Cộng theo vế các BĐT trên và rút gọn ta có:
\(\frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\)
Mà cũng theo AM-GM:
\(a+b+c\geq 3\sqrt[3]{abc}=3\)
\(\Rightarrow \frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\geq \frac{29}{144}.3-\frac{17}{48}=\frac{1}{4}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 3 số dương, ta được:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right).64}}\)\(=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\left(1\right)\)
Chứng minh tương tự, ta được:
\(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\left(2\right)\)
\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3a}{4}\left(3\right)\)
Từ (1), (2), (3), ta được:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)\(+\frac{1+a}{8}+\frac{1+b}{8}+\frac{1+c}{8}+\frac{1+a}{8}+\frac{1+b}{8}+\frac{1+c}{8}\)\(\ge\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\)
\(\Leftrightarrow A+\frac{1+a}{4}+\frac{1+b}{4}+\frac{1+c}{4}\ge\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\)
\(\Leftrightarrow A+\frac{1+a+1+b+1+c}{4}\ge\frac{3a+3b+3c}{4}\)
\(\Leftrightarrow A+\frac{3+a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow A\ge\frac{3\left(a+b+c\right)}{4}-\frac{3-a-b-c}{4}\)
\(\Leftrightarrow A\ge\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{4}-\frac{3}{4}\)
\(\Leftrightarrow A\ge\frac{2\left(a+b+c\right)}{4}-\frac{3}{4}\left(4\right)\)
Mặt khác, vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 3 số dương, ta được:
\(a+b+c\ge3\sqrt[3]{abc}\)
Mà \(abc\ge1\Leftrightarrow\sqrt[3]{abc}\ge1\Leftrightarrow3\sqrt[3]{abc}\ge3\)
Do đó:
\(a+b+c\ge3\)
\(\Leftrightarrow2\left(a+b+c\right)\ge6\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{4}\ge\frac{6}{4}=\frac{3}{2}\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{4}-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\left(5\right)\)
Từ (4) và (5), ta được:
\(A\ge\frac{3}{4}\)(điều phải chứng minh)
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\abc=1\end{cases}}\Leftrightarrow a=b=c=1\)
Vậy \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)với \(a,b,c>0\)và \(abc\ge1\)
Với x,y>0x,y>0 đã cho, áp dụng bất đẳng thức Cô si ta có
\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{x}+\dfrac{1+c}{y}\ge\dfrac{3a}{\sqrt[3]{xy}}(1+b)(1+c)a3+x1+b+y1+c≥3xy3a
Kỳ vọng rằng bất đẳng thức cần chứng minh trở thành đẳng thức khi a=b=c=1a=b=c=1, ta chọn x>0x>0 sao cho \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}=\dfrac{1+b}{x}=\dfrac{1+c}{y}(1+b)(1+c)a3=x1+b=y1+c xảy ra khi a=b=c=1a=b=c=1, tức là \dfrac{1}{4}=\dfrac{2}{x}=\dfrac{2}{y}\Leftrightarrow x=y=841=x2=y2⇔x=y=8. Vì vậy
\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge\dfrac{3a}{4}(1+b)(1+c)a3+81+b+81+c≥43a
Viết hai bất đẳng thức tương tự rồi cộng theo vế ba bất đẳng thức này ta có
\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{3}{4}+\dfrac{a+b+c}{4}\ge(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c3+43+4a+b+c≥
\dfrac{3}{4}\left(a+b+c\right)43(a+b+c)
Hay \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)-\dfrac{3}{4}(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c3≥21(a+b+c)−43
Mà a+b+c\ge3\sqrt[3]{abc}\ge3a+b+c≥33abc≥3 . Suy ra
\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{3}{4}(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c3≥43
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\)
\(\ge3\sqrt[3]{\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\cdot\dfrac{b+1}{8}\cdot\dfrac{c+1}{8}}=\dfrac{3a}{4}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c+1}{8}+\dfrac{a+1}{8}\ge\dfrac{3b}{4};\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{a+1}{8}+\dfrac{b+1}{8}\ge\dfrac{3c}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\dfrac{2\left(a+b+c+3\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow VT+\dfrac{2\left(3\sqrt[3]{abc}+3\right)}{8}\ge\dfrac{3\cdot3\sqrt[3]{abc}}{4}\Leftrightarrow VT\ge\dfrac{3}{4}=VP\)
Khi \(a=b=c=1\)
Bài 1:
dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .
Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)
Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)
\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)
P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf
Nhìn qua đã biết là đề sai rồi bạn
Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay