\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}>\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Có gì đâu nhỉ?

Cauchy-Schwarz:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\dfrac{9}{2\left(a+b+c\right)}=\dfrac{4,5}{a+b+c}>\dfrac{3}{a+b+c}\)

7 tháng 4 2018

áp dụng BĐT cauchy- schwarz ta có

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{9}{2\left(a+b+c\right)}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{3}{a+b+c}\) (đpcm)

21 tháng 3 2017

Bài 1:a,b,c ba cạnh tam giác => a,b,c dương

\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)

\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)

\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)

p/s: đề sao làm vậy:

mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn

22 tháng 3 2017

hướng dẫn bài 2,3 giúp mình với

15 tháng 5 2018

AM-GM:

\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge2\sqrt{\dfrac{a}{b^2}\cdot\dfrac{1}{a}}=\dfrac{2}{b}\)

\(\dfrac{b}{c^2}+\dfrac{1}{b}\ge\dfrac{2}{c}\)

\(\dfrac{c}{a^2}+\dfrac{1}{c}\ge\dfrac{2}{a}\)

Cộng vế theo vế ta có:\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

\(\Rightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)(đpcm)

20 tháng 7 2017

Đặt vế trái BĐT cần chứng minh là P

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ( Tự chứng minh BĐT này ), ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{1}{\dfrac{4}{a+b}}=\dfrac{a+b}{4}\left(1\right)\)

Tương tự: \(\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}\le\dfrac{b+c}{4}\left(2\right)\)

\(\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{c+a}{4}\left(3\right)\)

Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:

\(P\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{a+b+c}{2}\)

Dấu ''='' xảy ra khi và chỉ khi a=b=c

25 tháng 3 2017

2a)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2a+b+c}=\dfrac{1}{a+b+a+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{1}{a+2b+c}=\dfrac{1}{a+b+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{1}{a+b+2c}=\dfrac{1}{a+c+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{1}{4}\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)+\dfrac{1}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{4\left(a+b\right)}+\dfrac{1}{4\left(a+c\right)}+\dfrac{1}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

Chứng minh rằng \(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

\(\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(VT\le\dfrac{1}{2\left(a+b\right)}+\dfrac{1}{2\left(b+c\right)}+\dfrac{1}{2\left(c+a\right)}\)

\(\Rightarrow\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

2b)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+a^2\ge2\sqrt{a^2}=2a\\1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1+a^2}\le\dfrac{a}{2a}=\dfrac{1}{2}\\\dfrac{b}{1+b^2}\le\dfrac{b}{2b}=\dfrac{1}{2}\\\dfrac{c}{1+c^2}\le\dfrac{c}{2c}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

24 tháng 3 2017

Bài 1)

Nháp : nhìn nhanh ta thấy nên áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Giải

Vì x,y > 0 =) 2x + y > 0 , x + 2y > 0

Áp dụng BĐT cauchy dạng phân thức cho hai bộ số không âm \(\dfrac{1}{2x+y}\)\(\dfrac{1}{x+2y}\)

\(\Rightarrow\dfrac{1}{x+2y}+\dfrac{1}{2x+y}\ge\dfrac{4}{x+2y+2x+y}=\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3\left(x+y\right)}=4\)

Dấu '' = "xảy ra khi và chỉ khi x + 2y = y + 2x (=) x=y

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

13 tháng 1 2018

Ta có:

\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)

\(\dfrac{1^2}{a^3\left(b+c\right)}+\dfrac{1^2}{b^3\left(c+a\right)}+\dfrac{1^2}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)

\(\dfrac{a^2b^2c^2}{a^3\left(b+c\right)}+\dfrac{a^2b^2c^2}{b^3\left(c+a\right)}+\dfrac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)

\(\dfrac{b^2c^2}{a\left(c+b\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{3}{2}\)

Áp dụng BĐT Svacxo ta có:

\(\dfrac{b^2c^2}{a\left(b+c\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{\left(ab+bc+ca\right)^2}{a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)}\) \(\dfrac{b^2c^2}{a\left(b+c\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{\left(ab+bc+ca\right)}{2}\) (1)

Chứng minh: \(\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\Leftrightarrow ab+bc+ca\ge3\)

Áp dụng BĐT Cosi ta có:

\(ab+bc+ca\ge3\sqrt[3]{ab.bc.ca}\)

\(ab+bc+ca\ge3\) (2)

Từ (1) và (2)

=> ĐPCM

9 tháng 4 2018

Câu hỏi của Miamoto Shizuka - Toán lớp 8 | Học trực tuyến

19 tháng 3 2017

giả sử \(\dfrac{a+b}{2a-b}\dfrac{c+b}{2c-b}< 4\)

\(< =>\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}-4< 0\)

\(< =>\dfrac{2ac-ab+2bc-b^2+2ac-bc+2ab-b^2-2bc+4b^2+4ac-2ab}{4ac-2ab-2bc+b^2}< 0\)

<=> \(\dfrac{8ac-bc-ab+2b^2}{4ac-2\left(ab+bc\right)+b^2}< 0\)

\(\left(do\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{2}{b}< =>\dfrac{a+c}{ac}=\dfrac{2}{b}< =>ab+bc=2ac\right)\)

<=> \(\dfrac{8ac-2ac+2b^2}{b^2}< 0< =>\dfrac{6ac+2b^2}{b^2}< 0\)

mà a,b,c là số dương theo giả thiết nên \(\dfrac{6ac+2b^2}{b^2}\)không thể bé hơn 0

=> giả sử sai => \(\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}-4\) phải lớn hơn hoặc bằng 0

=> \(\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\) lớn hơn hoặc bằng 4 (Đpcm)

19 tháng 3 2017

mình nghĩ nếu giải bám sát thì sẽ xác thực hơn là giải sử vậy cách giải nên chỉ tính cái cần cm minh rồi đổi vế rồi dựa vào điều kiện người ta cho thì hay hơn

26 tháng 5 2017

Áp dụng BĐT Cauchy schwarz dạng phân thức ta có :

\(\dfrac{a^2}{1+b-a}+\dfrac{b^2}{1+c-b}+\dfrac{c^2}{1+a-c}\ge\dfrac{\left(a+b+c\right)^2}{3}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)

( vì \(a^2+b^2+c^2\ge ab+bc+ca\) )

Xảy ra đẳng thức khi và chỉ khi a=b=c= \(\sqrt{\dfrac{1}{3}}\)