Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c là ba số dương thoả mãn \(0\le a\le b\le c\le1\)
Chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Giải :
Từ giả thiết ta có : \(\left(1-b\right)\left(1-c\right)\ge0\Leftrightarrow1-\left(b+c\right)+bc\ge0\Rightarrow bc+1\ge b+c\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)
Tương tự ta cũng có : \(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\) ; \(\frac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng (1) , (2) , (3) theo vế ta được : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
ta có : a<= 1 => a-1<=0
b<=1 => b-1<=0
=> (b-1)(a-1) >= 0 => ab-a-b+1 >=0 => ab+1>=a+b => 2ab+1>= a+b ( vì ab>=0)
=> 2ab+1+1>= a+b+c ( vì 1>= c)
2ab+2>=a+b+c => 1/2ab+2<=1/a+b+c c/ab+1<= 2c/a+b+c
chứng minh tương tự ta có b/ac+1 <= 2b/a+b+c ; a/bc+1<= 2a/a+b+c
=> a/bc+1+b/ac+1 + c/ab+c <= 2a+2b+2c / a+b+c = 2 ( đpcm )
Do a,b,c thuộc N mà a,b,c<1
\(\Rightarrow\)a=0,b=0,c=0
Vậy ....
Do \(a,b,c\) nguyên dương nên \(\left(a,b,c\right)=\left(0;0;0\right),\left(0;0;1\right);\left(0;1;1\right);\left(1;1;1\right)\)
Thử vào biểu thức bên trái đều thấy nó có giá trị nhỏ hơn hoặc bằng 2.
Giải:
Từ giả thiết ta có:
\(\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(b+c\right)+bc\ge0\)
\(\Leftrightarrow bc+1\ge b+c\)
\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)
Tương tự ta có:
\(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\)
\(\frac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng theo vế \(\left(1\right);\left(2\right);\left(3\right)\) ta được:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\) (Đpcm)