Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó M = 4(a - b)(b - c) - (c - a)2
= 4(2020k - 2021k)(2021k - 2022k) - (2022k - 2020k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2 = 0
Vậy M = 0
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\)( \(k\ne0\))
\(\Rightarrow a=2020k\); \(b=2021k\); \(c=2022k\)
Thay a, b, c vào biểu thức M ta có:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(2020k-2021k\right)\left(2021k-2022k\right)-\left(2022k-2020k\right)^2\)
\(=4.\left(-k\right).\left(-k\right)-\left(2k\right)^2=4k^2-4k^2=0\)
Vậy \(M=0\)
Áp dụng tính chất hãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a+b=2c;b+c=2a;a+c=2b\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{b}{a}=\frac{a}{c}=\frac{c}{b}=1\)
\(\Rightarrow B=2.2.2=8\)
ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a-a+a+b+b-b-c+c+c}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)
nếu a+b+c =0
=> a =0-b-c => a = -(b+c)
b = 0-a-c => b = -(a+c)
c = 0-a-b => c = -(a+b)
thay vào \(B=\left(1+\frac{-\left(a+c\right)}{a}\right).\left(1+\frac{-\left(b+c\right)}{c}\right).\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(\frac{a-\left(a+c\right)}{a}\right).\left(\frac{c-\left(b-c\right)}{c}\right).\left(\frac{b-\left(a+b\right)}{b}\right)\)
\(B=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}\)
\(B=-1\)
nếu a+b+c khác 0
mà \(\frac{a+b+c}{c+a+b}=\frac{a}{c}=\frac{b}{a}=\frac{c}{b}=1\Rightarrow a=b=c\)
=> \(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)
\(B=\left(1+1\right).\left(1+1\right).\left(1+1\right)\)
\(B=2.2.2\)
\(B=8\)
KL: B= -1 hoặc B=8
Chúc bn học tốt !!!!
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{b}{a}=1;\frac{a}{c}=1;\frac{c}{b}=1\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
DDawtj \(\frac{a}{1997}=\frac{b}{1998}=\frac{c}{1999}=k\)
\(\Rightarrow a=1997k;b=1998k;c=1999k\)
\(16\left(a-b\right)\left(b-c\right)-4\left(c-a\right)^2\)
\(=16\left(1997k-1998k\right)\left(1998k-1999k\right)-4\left(1999k-1997k\right)\)
\(=16.\left(-k\right).\left(-k\right)-4.\left(2k\right)^2\)
\(=16k^2-4.4k^2\)
\(=16k^2-16k^2\)
\(=0\)