\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\) .

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{a}{a+b}\cdot b=\frac{c}{b+c}\cdot b\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{b+c}\Rightarrow a\left(b+c\right)=c\left(a+b\right)\Rightarrow ab+ac=ac+bc\Rightarrow ab=bc\Rightarrow a=c\left(1\right)\)

\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{b}{a+b}\cdot a=\frac{c}{a+c}\cdot a\)

\(\Rightarrow\frac{b}{a+b}=\frac{c}{a+c}\Rightarrow b\left(a+c\right)=c\left(a+b\right)\Rightarrow ab+bc=ac+bc\Rightarrow ab=ac\Rightarrow b=c\left(2\right)\)

\(\frac{bc}{b+c}=\frac{ac}{a+c}=\frac{b}{b+c}\cdot c=\frac{a}{a+c}\cdot c\)

\(\Rightarrow\frac{b}{b+c}=\frac{a}{a+c}\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Rightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow a=b\left(3\right)\)

từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\iff\)\(\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)

\(\iff\) \(ac+bc=ab+ac=bc+ba\)

+)\(ac+bc=ab+ac\) 

\(\implies\)\(bc=ab\)

\(\implies\) \(c=a\left(1\right)\)

+)\(ab+ac=bc+ba\)

\(\implies\) \(ac=bc\)

\(\implies\) \(a=b\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\implies\) \(a=b=c\)

\(\implies\) \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{aa+bb+cc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Vậy \(M=1\)

23 tháng 12 2018

Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Suy ra:

 \(\frac{a}{b+c}=\frac{1}{2}\Rightarrow a=\frac{b+c}{2}=\frac{1}{2}\times\left(b+c\right)\)

\(\frac{b}{a+c}=\frac{1}{2}\Rightarrow b=\frac{a+c}{2}=\frac{1}{2}\times\left(a+c\right)\)

\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow c=\frac{a+b}{2}=\frac{1}{2}\times\left(a+b\right)\)

Thay  \(a=\frac{1}{2}\times\left(b+c\right)\);  \(b=\frac{1}{2}\times\left(a+c\right)\)\(c=\frac{1}{2}\times\left(a+b\right)\) vào P ta được:

\(\frac{b+c}{\frac{1}{2}\times\left(b+c\right)}+\frac{c+a}{\frac{1}{2}\times\left(a+c\right)}+\frac{a+b}{\frac{1}{2}\times\left(a+b\right)}\)

\(=\frac{\text{ }1\text{ }}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}\)

\(=2+2+2=6\)

Vậy giá trị của P  là 6

      

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

19 tháng 6 2019

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\) 

+) a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow P=-3\) 

+) a+b+c khác 0 => \(\hept{\begin{cases}a=\frac{1}{2}\left(b+c\right)\\b=\frac{1}{2}\left(a+c\right)\\c=\frac{1}{2}\left(b+a\right)\end{cases}}\) 

\(\Rightarrow P=\frac{3}{2}\) 

Vậy: P = 3/2 hoac P=-3

4 tháng 8 2017

ban oi mk dat cau hoi nay cac ban giup mk vs

4 tháng 8 2017

1/2x + 3/5 . ( x- 2 ) = 3

29 tháng 12 2016

theo bài ra ta có:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

=> \(\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)

=> \(\frac{abc}{ca+cb}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)

vì a,b,c khác 0 => ca+cb = ab+ac = bc+ba

=> a = b = c

ta có:

\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

vậy M = 1

29 tháng 10 2016

Mik ko bk đúng hay sai đâu nha!Đại số lớp 7

9 tháng 12 2018

\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc\Rightarrow abb+abc=abc+bbc\Rightarrow a=c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(c+a\right).bc=\left(b+c\right).ca\Rightarrow bcc+abc=abc+cca\Rightarrow a=b\end{cases}\Rightarrow a=b=c}\)

\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

p/s: bài này có nhiều cách lắm, cách này ko đc thì thử làm cách khác =))

9 tháng 12 2018

\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab\left(b+c\right)=\left(a+b\right)bc\)

\(\Rightarrow ab^2+abc=abc+b^2c\Rightarrow ab^2=b^2c\Rightarrow a=c\) (1)

\(\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow bc\left(c+a\right)=\left(b+c\right)ca\)

\(\Rightarrow bc^2+bca=bca+c^2a\Rightarrow bc^2=c^2a\Rightarrow b=a\)(2)

Từ (1) và (2) được a = b = c

Khi đó:

\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

9 tháng 12 2018

\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc=ab^2+abc=abc+b^2c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(a+c\right).bc=\left(b+c\right).ac\Rightarrow abc=c^2a=abc+c^2b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=c\\a=b\end{cases}\Rightarrow a=b=c\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1}\)