K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
10 tháng 12 2021

Ta có: 

\(a+\frac{1}{b}=b+\frac{1}{c}\)\(\Leftrightarrow\) \(a-b=\frac{1}{c}-\frac{1}{b}\)\(\Leftrightarrow\) \(\left(a-b\right)=\frac{b-c}{bc}\)  (1)

\(a+\frac{1}{b}=c+\frac{1}{a}\)\(\Leftrightarrow\)\(a-c=\frac{1}{a}-\frac{1}{b}\)\(\Leftrightarrow\) \(\left(a-c\right)=\frac{b-a}{ab}\)  (2)

\(c+\frac{1}{a}=b+\frac{1}{c}\)\(\Leftrightarrow\) \(c-b=\frac{1}{c}-\frac{1}{a}\)\(\Leftrightarrow\) \(\left(c-b\right)=\frac{a-c}{ac}\)   (3)

Nhân từng vế của  (1)(2)(3) ta được \(\left(a-b\right)\left(a-c\right)\left(c-b\right)=\frac{\left(b-c\right)\left(b-a\right)\left(a-c\right)}{\left(abc\right)^2}=\frac{\left(c-b\right)\left(a-b\right)\left(a-c\right)}{\left(abc\right)^2}\)

\(\Rightarrow abc=\pm1\).

9 tháng 11 2016

Đặt \(T=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\) (*)

Ta có: \(abc=1\Rightarrow c=\frac{1}{ab}\).Thay vào (*) ta có:

\(T=\frac{1}{1+a+ab}+\frac{1}{1+b+\frac{1}{a}}+\frac{1}{1+\frac{1}{ab}+\frac{1}{b}}\)

\(=\frac{1}{1+a+ab}+\frac{1}{\frac{a+ab+1}{a}}+\frac{1}{\frac{ab+1+a}{ab}}\)

\(=\frac{1}{1+a+ab}+\frac{a}{a+ab+1}+\frac{ab}{ab+1+a}\)

\(=\frac{1+a+ab}{1+a+ab}=1=VP\) (Đpcm)

 

27 tháng 4 2016

Ta có:

\(a+\frac{1}{b}=b+\frac{1}{c}\Rightarrow a-b=\frac{b-c}{bc}\)

làm tương tự với các đẳng thức còn lại rồi nhân với nhau ta có đpcm.

29 tháng 7 2017

Ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ca=0\)

Ta lại có:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\)

\(=\frac{a^2}{a^2-ab+bc-ca}+\frac{b^2}{b^2-ab-bc+ca}+\frac{c^2}{c^2+ab-bc-ca}\)

\(=\frac{a^2}{\left(b-a\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(c-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)

\(=-\left(\frac{a^2}{\left(a-b\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=-\left(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)

\(=-\frac{\left(a-b\right)\left(c-b\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

19 tháng 12 2022

Ai có thể giải thích cho mình đoạn a^2/(a^2-ab+bc-ca) đc ko mình cảm ơn

1 tháng 11 2015

\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\) 

=> \(a-b=\frac{1}{c}-\frac{1}{b}\) => a - b = \(\frac{b-c}{bc}\) (1)

b - c = \(\frac{1}{a}-\frac{1}{c}\) => b - c = \(\frac{c-a}{ac}\)  (2)

c - a = \(\frac{1}{b}-\frac{1}{a}=\frac{a-b}{ab}\) (3)

Nhân vế với vế của  (1)(2)(3) => \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{b-c}{bc}.\frac{c-a}{ac}.\frac{a-b}{ab}\)

=> (abc)= 1 => abc = 1 hoặc abc  = -1

Vậy...  

 

6 tháng 4 2017

1 bai thoi cung dc