Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b=b^2+c=c^2+a\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b-b^2-c=0\\b^2+c-c^2-a=0\\c^2+a-a^2-b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=c-b\\b^2-c^2=a-c\\c^2-a^2=b-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b\right)=c-b\\\left(b-c\right)\left(b+c\right)=a-c\\\left(c-a\right)\left(c+a\right)=b-a\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{c-b}{a-b}\\b+c=\frac{a-c}{b-c}\\c+a=\frac{b-a}{c-a}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b-1=\frac{c-a}{a-b}\\b+c-1=\frac{a-b}{b-c}\\c+a-1=\frac{b-c}{c-a}\end{cases}}\)( * )
Thay ( * ) vào T ta được : \(T=\frac{\left(c-a\right)\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Vậy T = 1
Cách 1:Giả sử \(a=max\left\{a;b;c\right\}\Rightarrow1-3a\le0\)
Ta có:
\(P=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(=ab+bc+ca-3abc\)
\(=a\left(b+c\right)+bc\left(1-3a\right)\)
\(\le\frac{\left(a+b+c\right)^2}{4}+0=\frac{1}{4}\)
Đẳng thức xảy ra tại \(a=b=\frac{1}{2};c=0\)
Cách 2:
Ta sẽ đi chứng minh \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\le\left(a+b+c\right)^3\)
\(\Leftrightarrow\Sigma a^2b+\Sigma ab^2-12abc\le\Sigma a^3+3\Sigma a^2b+3\Sigma ab^2+6abc\)
\(\Leftrightarrow a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2-18abc\)
Theo Schur thì \(a^3+b^3+c^3\ge\Sigma a^2b+\Sigma ab^2+3abc\ge\Sigma a^2b+\Sigma ab^2-18abc\)
\(\Rightarrow P\ge\frac{1}{4}\) tại a=b=1/2 ; c=0 và các hoán vị
Cách 3:
\(\frac{1}{4}-P=\frac{\left(a+b+c\right)^3}{4}-\Sigma a^2b-\Sigma ab^2\)
\(=\frac{1}{4}\left(a^3+b^3+c^3-\Sigma a^2b-\Sigma ab^2+3abc\right)+\frac{3}{4}abc\ge0\) ( đúng theo Schur )
Vậy \(P\le\frac{1}{4}\)
Nhớ không nhầm thì hình như trong này có 1 cách của tth_new nhé !
18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)
Ta có ;
\(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>a=-b hoặc a=-c hoặc b=-c (1)
=>a=1 hoăc b=1 hoặc c=1 (2)
từ 1 và 2 => Q=1
\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-5xy=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=2y\end{cases}}\)
Mặt khác : x > y > 0 \(\Rightarrow x=2y\)
Ta có : \(E=\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
a) Dễ tự làm đi
b) Xét 1 + a2 = ab + bc + ca + a2
= b(c + a) + a(c + a)
= (c + a)(b + a)
Cmtt ta có : 1 + b2 = (c + b)(a + b)
1 + c2 = (b+c)( a + c)
Do đó : A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+b\right)\left(b+a\right)\left(c+a\right)\left(a+c\right)\left(b+c\right)}\)= 1
Xét a2 + 2bc - 1 = a2 + 2bc - ab - bc - ca
= a2 - ab + bc - ca
= a(a-b) - c(a-b)
= (a-b)(a-c)
Cmtt ta cũng có : b2 + 2ac - 1 = (b-c)(b-a)
c2 + 2ab - 1 = (c-a)(c-b)
Do đó : \(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(b-a\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
= -1
1) Thay xyz = 1 , ta có :
\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}=\frac{z}{z+xz+xyz}+\frac{xz}{xz+xyz+xyz^2}+\frac{1}{1+z+xz}\)
\(=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)
2) Phân tích A thành nhân tử được \(A=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)
Vì a + b + c = 0 nên A = 0
3) Phân tích A thành \(\frac{\left(b-a\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
ques này nhiều ng` hỏi r` thay ab+bc+ca=1 vào rồi phân tích rút gọn
Ta có :\(a^2+b=b^2+c\Rightarrow\left(a-b\right)\left(a+b\right)=c-b\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)=c-b-a+b\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=c-a\)
Tương tự \(\hept{\begin{cases}\left(b-c\right)\left(b+c-1\right)=a-b\\\left(a-c\right)\left(a+c-1\right)=c-b\end{cases}}\)
Nhận vế với vế của các đẳng thức trên ta được :
\(\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(\Rightarrow\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=1\)