Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)lực tĩnh điện đẩy nhau cảu A và B là :
9*10^(9)*((1.8*10^(-8)*5.4*10^(-9))/0.03^(2))=9.72*10^(-4) N
gọi X là q c
vì tổng lục tĩnh điện tác dụng lên A ss with BC nên
ta có pt
9.72*10^(-4)+(9*10^(9)*((1.8*10^(-8)*X)/0.04^(2))=9*10^(9)*((5.4*10^(-9)*X)/0.056(2))
giải tìm được X=-1.8*10^(-8)
không chắc đúng đâu !
hình như sai cái gì đó chổ pt thay 0.05^(2) =>0.5^(2)
ta được X=-9.6*10^(-9)
A B C q1>0 q2>0 E1 E2 E
Gọi \(\overrightarrow{E_1},\overrightarrow{E_2}\) là các vectơ cường độ điện trường gây ra bởi \(q_1\) và \(q_2\)
Ta có: \(E_1=E_2=k.\dfrac{q_1}{AB^2}=9.10^9.\dfrac{5.10^{-16}}{0,08^2}=7,03125.10^{-4}\left(V\text{/}m\right)\)
Từ hình vẽ: \(\left(\overrightarrow{E_1,}\overrightarrow{E_2}\right)=60^o\Rightarrow E=\sqrt{2E_1^2+2E_1^2.cos60^o}=E_1\sqrt{3}=7,03125.\sqrt{3}.10^{-4}\left(V\text{/}m\right)\)
a.Vì q1 > 0 mà chúng đẩy nhau nên q2 > 0
F= \(\frac{k.\left|q_1q_2\right|}{r^2}\)
\(\Rightarrow\left|q_2\right|=\frac{F.r^2}{\left|q_1\right|}=\frac{6,75.10^{-5}.0,02^2}{\left|4.10^{-8}\right|}=0,675\left(C\right)\)
=>q2 =0,675 C
b)
b) \(E_{q_1}=\frac{k.\left|q_1\right|}{BH^2}=\frac{9.10^9.\left|4.10^{-8}\right|}{0,01^2}=3,6.10^6\frac{V}{m}\)
\(E_{q_2}=\frac{k.\left|q_2\right|}{AH^2}=\frac{9.10^9.\left|0,675\right|}{0,01^2}=6,075.10^{13}\frac{V}{m}\)
Vì vecto E1 ↑↑ vecto E2=>E=|E1-E2|=6,075.1013 V/m
\(E_{q_3}=\frac{k.\left|q_3\right|}{AH^2}=\frac{9.10^9.\left|-2.10^{-8}\right|}{\left(0,02.\sin45^o\right)^2}=621,5.10^3\frac{V}{m}\)
Vì vecto E vuông góc với Eq3 nên:
EH =\(\sqrt{E_{q_3}^2+E^2}=6,075.10^{13}\left(\frac{V}{m}\right)\)
mấy bài này thường rất khó chịu
nhất ở đoạn vẽ hình
a,
khoảng từ tâm D đến các cạnh \(r=\dfrac{2}{3}.\sqrt{6^2-3^2}=2\sqrt{3}\)
ta có\(F_1=F_2=F_3=k\dfrac{\left|q_1.q_0\right|}{\left(2\sqrt{3}.10^{-2}\right)^2}=7,5\left(N\right)\)
ta tổng lực F2 và F3 với cosa=120 độ
\(F_{23}=\sqrt{F_2^2+F_3^2+2F_2F_3cos\alpha}=7,5\left(N\right)\)
theo phương chiều như hình vẽ ta có \(F=\left|F_{23}-F_1\right|=0\)