K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔHAC có AB<BC

mà AB,BC lần lượt là hình chiếu của HA,HC trên AC
nên HA<HC

mà HB<HA

nên HB<HA<HC

b: HA<HC

=>góc HCA<góc HAC

c: góc HCA<góc HAC

=>90 độ-góc HCA>90 độ-góc HAC

=>góc BHC>góc BHA

15 tháng 3 2024

1+1=3@@@@@@@@@@@

 

a: ΔHBA vuông tại B

=>HB<HA

Vì AB<BC

nên HA<HC

=>HB<HA<HC

b: HA<HC

=>góc HCA<góc HAC

c: HA<HC

=>góc HCA<góc HAC

=>góc AHB>góc BHC

13 tháng 3 2023

có thể giải chi tiết cho mik đc ko ạ

vẽ cả hình nữa 

 

a: ΔHBA vuông tại B

=>HB<HA

AB<BC

=>HA<HC

=>HB<HA<HC

b: Vì HA<HC

nên góc HAC>góc HCA

10 tháng 6 2020

a, Gọi giao điểm của BH với AE là I

Xét △ABH vuông tại A và △EBH vuông tại E 

Có: AB = EB (gt)

       BH là cạnh chung

=> △ABH = △EBH (ch-cgv)

Cách 1: (nếu ktra 1 tiết hoặc học kỳ)

=> ∠BAH = ∠EBH (2 góc tương ứng)

Xét △ABI và △EBI

Có: AB = EB (gt)

   ∠ABI = ∠EBI (cmt)

     BI là cạnh chung

=> △ABI = △EBI (c.g.c)

=> AI = EI (2 cạnh tương ứng)

và ∠AIB = ∠EIB (2 góc tương ứng)

Mà ∠AIB + ∠EIB = 180o (2 góc kề bù)

=> ∠AIB = ∠EIB = 180o : 2 = 90o

Mà AI = EI (cmt)

=> BI là đường trung trực AE

=> BH là đường trung trực AE

Cách 2: (chỉ dùng cho học kỳ, không dùng cho 1 tiết, làm cho nhanh, ngắn)

Làm tiếp tục đến => △ABH = △EBH (ch-cgv)

=> AH = HE (2 cạnh tương ứng)

=> H thuộc đường trung trực của AE

Vì AB = BE (gt)

=> B thuộc đường trung trực AE

=> HB là đường trung trực của AE

b, Xét △HEC vuông tại H có: HC > HE (quan hệ giữa đường xiên và đường vuông góc)

=> HC > AH (AH = HE <= △ABH = △EBH)

c, Xét △ABC và △ADC cùng vuông tại A

Có: AC là cạnh chung

       AB = AD (gt)

=> △ABC = △ADC (2cgv)

=> ∠ACB = ∠ACD (2 góc tương ứng)  (1)

Xét △BDE vuông tại E và △BCA vuông tại A

Có: ∠ABC là góc chung

      BE = BA (gt)

=> △BDE = △BCA (cgv-gnk)

=> ∠BDE = ∠BCA (2 góc tương ứng)

Mà ∠ACB = ∠ACD (cmt)   

=> ∠BDE = ∠ACD  (2)

Xét △ADH vuông tại A và △ECH vuông tại E

Có: AH = EH (cmt)

  ∠AHD = ∠EHC (2 góc đối đỉnh)

=> △ADH = △ECH (cgv-gnk)

=> DH = HC (2 cạnh tương ứng)

=> △HCD cân tại H

=> ∠HDC = ∠HCD  (3)

Từ (1), (2), (3) => ∠HDC = ∠BDE 

=> DH là phân giác BDC

d, Sai đề

9 tháng 7 2019

a

Tam giác ABC cân tại A có \(\widehat{A}=40^0\Rightarrow\widehat{B}=\widehat{C}=70^0\)

Do \(\widehat{C}>\widehat{A}\left(70^0>40^0\right)\Rightarrow AB>BC\)

b

Do tam giác ABC cân tại A nên đường phân giác AD đồng thời là đường trung tuyến.

Có 2 trung tuyến AD và BE cắt nhau tại H nên H là trọng tâm.

=> CH cũng là trung tuyến.

=> ĐPCM

c

Xét \(\Delta ABK\) và \(\Delta ACK\) có:

\(AB=AC\)

\(\widehat{ABK}=\widehat{ACK}=90^0\)

AK là cạnh chung

\(\Rightarrow\Delta ABK=\Delta ACK\left(ch.cgv\right)\)

\(\Rightarrow BK=CK\)

\(\Rightarrow K\) nằm trên đường trung trực của BC,A cũng nằm trên đường trung trực của BC.

Mặt khác AD đồng thời là đường trung trực.Khi đó A,H,K thẳng hàng.

25 tháng 4 2019

B A C D E F S

a)   Tam giác ABD và EBD có:

Góc ABD = EBD (BD là phân giác)

Cạnh BA = BE (gt)

Cạnh BD chung

=> Tam giác ABD = EBD (c-g-c)   (*)

b)  Từ (*) => góc BED = 90 độ (= góc BAD)

=> tam giác EDC vuông tại E => cạnh huyền DC > cạnh góc vuông DE  (1)

mà từ (*) => DE = AD  (2)

Từ (1) và (2) => DC > AD

c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D => D là trực tâm

Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC

=> tam giác FBC cân tại B => đường cao, phân giác cũng là trung tuyến. Vậy BD đi qua trung điểm S của FC.

Vậy B, D, S thẳng hàng.

26 tháng 3 2024

α⚽

9 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

          \(AB^2+AC^2=BC^2\)

=>\(BC^2\)=64+36=100(cm)

=>BC=10cm

vậy  BC=10cm

b,xét 2t.giác vuông ABE và DBE có:

          EB chung

          AB=BD(gt)

=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c,xét 2 t.giác vuông  AEF và t.giác DEC có:

            AE=DE(theo câu b)

            \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)

=>AF=DC mà BA=BD(gt) suy ra BF=BC

d,gọi O là giao điểm của BE và CF 

xét t.giác BFO và t.giác BCO có:

            BF=BC(theo câu c)

            \(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)

            BO cạnh chung

=> t.giác BFO=t.giác BCO(c.g.c)

=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)

Từ (1) và (2) suy ra BE là trung trực của CF

học tốt!

          

29 tháng 1 2016

a) Ta có : tam giác ABC vuông tại A 

=> góc B + góc C = 90\(^o\)

Mà góc B = 53\(^o\)

=> góc C = góc A - góc B 

=> góc C = 90\(^o\)- 53\(^o\)

=> góc C = 37\(^o\)

b) Xét tam giác BEA và  tam giác BED có :

BD = BA (gt)

BE là cạnh chung

góc ABE = góc DBE ( BE là tia p/giác của góc B)

=>  tam giác BEA =  tam giác BED

c) Ta có CH vuông góc với BE 

=> Tam giác BHC và  tam giác BHF là  tam giác vuông

Xét  tam giác vuông BHF và  tam giác vuông BHC có:

BH là cạnh chung 

góc FBH = góc HBC ( BE là tia p/giác của góc B)

=>  tam giác vuông BHF =  tam giác vuông BHC ( cạnh góc vuông + góc nhọn )

=> BF = BC ( 2 cạnh tương ứng ) (*)

d) Xét tam giác BEF và tam giác BEC có :

BF = BC ( theo (*))

góc FBE = góc CBE ( BE là tia p/giác của góc B)

BE là cạnh chung

=>  tam giác BEF = tam giác BEC (c . g . c )

=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)

Xét  tam giác BAC và  tam giác BDF có :

góc BFD = góc BCA ( theo (**))

góc B là góc chung

BA = BD (gt)

=> tam giác BAC =  tam giác BDF ( g . c . g )

=> góc FDB = góc CAB ( 2 góc tương ứng )

Xét tam giác BED có : góc EBD +  góc BED +  góc BDE = 180\(^o\)

Mà :góc FDB = góc CAB = 90\(^o\)

góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)

=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))

=> góc BED = 180\(^o\)- 116,5\(^o\)

=> góc BED = 63,5\(^o\)

Mặt khác : Tam giác BED = tam giác BEA 

=> góc AEB = BED = 63,5\(^o\)

Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)

Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)

=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))

=> FEA = 180\(^o\)- 127\(^o\)

=> FEA = 53\(^o\)

Lại có : góc FAD = góc FEA + góc AEB + góc BED 

=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)

=> FAD = 180\(^o\)

=> D, F, E thẳng hàng

6 tháng 4 2019

a, vì BD=BA nên t.giác DBA caab tại B

=>\(\widehat{BDA}\)=\(\widehat{BAD}\)mà \(\widehat{EDB}\)=\(\widehat{A}\)=90 độ nên suy ra góc \(\widehat{EAD}\)=\(\widehat{EDA}\)

=>t.giác EAD cân tại E

=>AE=DE đpcm

b,vì ED và AH cùng vuông góc vs BC nên ED//AH

=> \(\widehat{EDA}\)=\(\widehat{DAH}\)(so le) mà \(\widehat{EDA}\)=\(\widehat{EAD}\)(t.giác AED cân tại E)

=>\(\widehat{DAH}\)=\(\widehat{EAD}\)

=> AD là p/g của góc HAC

c, xét 2 t.giác vuông AKD và AHD có:

                 AD chung

                \(\widehat{KAD}\)=\(\widehat{HAD}\)(AD là p/g của \(\widehat{HAC}\))

=>t.giác AKD=t.giác AHD(CH-GN)

=>AK=AH

#HỌC TỐT#

           

6 tháng 4 2019

A B C H D E K