Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)
\(b,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)
\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)
Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)
\(\Leftrightarrow P\notinđths\)
Vậy 3 điểm này ko thẳng hàng
Gọi d: y = ax + b là đường thẳng đi qua hai điểm A, B.
Ta có \(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\).
Do đó đường thẳng đi qua A, B là y = -x + 3.
Thay x = 3 vào ta được y = 0 nên C(3; 0) thuộc đường thẳng đó
a.
Gọi d là đường thẳng đi qua A, B. Do A; B đều thuộc d nên tọa độ A; B phải thỏa mãn pt d
\(\Leftrightarrow\left\{{}\begin{matrix}-5=a.0+b\\-1=-1.a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=-5\end{matrix}\right.\)
b.
Câu b đề sai, 4 điểm này không hề thẳng hàng (thay tọa độ C, D vào pt d đều không thỏa mãn)
Giả sử đường thẳng d đi qua A và B có dạng: `y=ax+b`
Đường thẳng d đi qua A và B là nghiệm của hệ: `{(2=a.1+b),(0=a.(-1)+b):}`
`<=> {(a=1),(b=1):}`
`=> d:\ y=x+1`
`=> C\ in (d)`
`=>` A,B,C thẳng hàng.
Đường thẳng đi qua 3 điểm đó là: `y=x+1`.
Lời giải:
a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$
Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)
Vậy ptđt $(d)$ là: $y=x+1$
b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$
$\Rightarrow A,B,C$ thẳng hàng.