Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{x}{x-4}=\dfrac{...}{x^2-16}=\dfrac{...}{\left(x-4\right)\left(x+4\right)}\)
\(\Rightarrow\dfrac{...}{\left(x-4\right)\left(x+4\right)}=\dfrac{x}{x-4}=\dfrac{x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{x^2+4x}{\left(x-4\right)\left(x+4\right)}\)
Vậy đa thức cần điền vào dấu ... là \(x^2+4x\)
Ta có:
(...) . (x-4) = x . ( x2- 16 )
= x(x - 4)(x + 4) = (x2 + 4x)(x -4)
Vậy phải điền vào chỗ trống đa thức x(x + 4) hay x2 + 4x.
Ta có: (…)(x – 4) = x(x2 – 16) = x(x - 4)(x + 4) = (x2 + 4x)(x -4)
Vậy phải điền vào chỗ trống đa thức x(x + 4) hay x2 + 4x.
1 x . x x + 1 . x + 1 x + 2 . x + 2 x + 3 . x + 3 x + 4 . x + 4 x + 5 . x + 5 x + 6 . x + 6 x + 7 . x + 7 x + 8 . x + 8 x + 9 . x + 9 x + 10 . x + 10 1 = 1
a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)
=\(-x^5+2x^4-4x^2-1\)
f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
=\(3x^5-10x^4-13\)
b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)
=\(x^4+9x^3-11x^2+7x-2\)
f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)
=\(9x^4+5x^3-x^2-x-12\)
a )
\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)
2A(x)-D(x)=3B(x)
<=>D(x)=2A(x)-3B(x)
=4x4-8+2x3-14x-(3x4-3x3+3x2+21x+12)
Rút gọn đi ta đc:D(x)=x4+5x3-3x2-35x-20
Đúng thì chọn nha!
Giải:
Gọi đa thức cần tìm là A
Ta có:
\(\dfrac{x^2}{x^2+7}=\dfrac{A}{x^4-49}\)
\(\Leftrightarrow\dfrac{x^2}{x^2+7}=\dfrac{A}{\left(x^7-7\right)\left(x^2+7\right)}\)
\(\Leftrightarrow\dfrac{x^2\left(x^2-7\right)}{\left(x^2+7\right)\left(x^2-7\right)}=\dfrac{A}{\left(x^2-7\right)\left(x^2+7\right)}\)
\(\Leftrightarrow x^2\left(x^2-7\right)=A\)
\(\Leftrightarrow A=x^4-7x^2\)
Vậy ...