K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NC
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AN
0
DA
0
TC
0
NH
0
CR
1
30 tháng 4 2017
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk100
B = \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+...+\frac{200.202}{201^2}=\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{5^2}\right)+\left(1-\frac{1}{7^2}\right)+...+\left(1-\frac{1}{201^2}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{201^2}\right)\)
\(=100-\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{201^2}\right)\)
Ta có Đặt \(C=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+....+\frac{1}{201^2}\)\
\(< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{199.201}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{199.201}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{201}\right)=\frac{1}{2}\left(1-\frac{1}{201}\right)=\frac{1}{2}.\frac{200}{201}=\frac{100}{201}< \frac{1}{2}\)
=> C < 1/2
=> B > 100 - 1/2
=> B > 99,5