Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Gọi số cần tìm là \(x\left(x\ne0,x>9\right)\)
Ta có:
\(53=mx+2\left(m\in N\right)\\ \Rightarrow51=mx\\ \Rightarrow x\inƯ\left(51\right)\left(1\right)\\ 77=nx+9\left(n\in N\right)\\ \Rightarrow68=nx\\ \Rightarrow x\inƯ\left(68\right)\left(2\right)\)
Từ (1) và (2) ta có:
\(x\inƯC\left(51,68\right)\)
\(51=3\cdot17\\ 68=2^2\cdot17\\ \Rightarrow\text{ƯCLN}\left(51,68\right)=17\\ ƯC\left(51,68\right)=Ư\left(17\right)=\left\{1;17\right\}\)
Vì x > 9 nên x = 17
Vậy số chia là 17
3. Làm câu b trước, các câu kia trả lời tương tự hoặc áp dụng điều đã chứng minh
b,
\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\\ =\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\\ =a\left(1+a\right)+a^3\left(1+a\right)+...+a^{29}\left(1+a\right)\\ =\left(1+a\right)\left(a+a^3+...+a^{29}\right)⋮a+1\)
Vậy \(a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮a+1\) với a thuộc N
Ta có \(M=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{28}.\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{28}\right)⋮13\Rightarrow M⋮13\)
M = 31 + 32 + 33 +...+ 328 + 329 + 330
M = ( 31 + 32 + 33) + ...+ ( 328 + 329 + 330 )
M = 3(1 + 3 + 32 ) +...+ 328( 1 + 3 + 32)
M = 3 .13 +...+ 328.13
\(\Rightarrow M⋮13\)(đpcm)
!!!
a)\(2^{29}+2^{30}=2^{29}\left(1+2\right)=2^{29}.3⋮3\)
Vậy \(2^{29}+2^{30}⋮3\)
=> A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + ..... + 328(1 + 3 + 32)
=> A = 3.13 + 34.13 + ..... + 328.13
=> A = 13( 3 + 34 + ..... + 328) chia hết cho 13
Ta có : A = 3 + 32 + 33 + ..... + 329 + 330
=> A = (3 + 32 + 33) + (34 + 35 + 36) + ...... + (328 + 329 + 330)
=> A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + ..... + 328(1 + 3 + 32)
=> A = 3.13 + 34.13 + ..... + 328.13
=> A = 13( 3 + 34 + ..... + 328) chia hết cho 13
B=6+62+63+...+629+630
B=(6+6263)+...+(628+629+630)
B=6.42+...+628.42
B=42.(6+64+...+628)
vi 42=21.2 nen\(\Rightarrow\)B\(⋮\)21