K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

x,y,z tỉ lệ với 3; 4; 5

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=n\) (n>0)

\(\Rightarrow\left\{{}\begin{matrix}x=3n\\y=4n\\z=5n\end{matrix}\right.\)\(\Rightarrow x+y+z=3n+4n+5n=12n\)

a, b, c tỉ lệ với 4; 5; 6

\(\Rightarrow\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=m\) (m>0)

\(\Rightarrow\left\{{}\begin{matrix}a=4m\\b=5m\\c=6m\end{matrix}\right.\)\(\Rightarrow a+b+c=4m+5m+6m=15m\)

\(x+y+z=a+b+c\)

\(\Rightarrow12n=15m\Rightarrow4n=5m\)

\(\Rightarrow n=\frac{5}{4}m\)

\(\Rightarrow\left\{{}\begin{matrix}x=3n=3.\frac{5}{4}m=\frac{15}{4}m\\y=4n=4.\frac{5}{4}m=5m\\z=5n=5.\frac{5}{4}m=\frac{25}{4}m\end{matrix}\right.\)

Ta có:

\(\left\{{}\begin{matrix}a=4m\\x=\frac{15}{4}m=3,75m\end{matrix}\right.\)mà m>0 nên \(a>x\left(đpcm\right)\)

\(\left\{{}\begin{matrix}b=5m\\y=5m\end{matrix}\right.\)\(\Rightarrow y=b\left(đpcm\right)\)

\(\left\{{}\begin{matrix}z=\frac{25}{4}m=6,25m\\c=6m\end{matrix}\right.\) mà m>0 nên \(z>c\left(đpcm\right)\)

27 tháng 12 2017

Giải:

\(a,b,c\) tỉ lệ thuân với \(x,y,z\) nên: \(\dfrac{x}{a}=\dfrac{y}{y}=\dfrac{z}{c}.\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}=x+y+z.\)

Lại có: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\left(\dfrac{x}{a}\right)^2=\left(\dfrac{y}{b}\right)^2=\left(\dfrac{z}{c}\right)^2\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2_{\left(1\right)}.\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}=x^2+y^2+z^2_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right).\)

27 tháng 12 2017

Vì a;b;c tỉ lệ thuận với x;y;z \(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2\)

Ta lại có :

\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\\ \Rightarrow x^2+y^2+z^2=\left(x+y+z\right)^2\left(đpcm\right)\)

1 tháng 1 2018

a) Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> ad = bc

Ta có : (a + 2c)(b + d)

= a(b + d) + 2c(b + d)

= ab + ad + 2cb + 2cd (1)

Ta có : (a + c)(b + 2d)

= a(b + 2d) + c(b + 2b)

= ab + a2d + cb + c2b

= ab + c2d + ad + c2b (Vì ad = cd) (2)

Từ (1),(2) => (a + 2c)(b + d) = (a + c)(b + 2d) (ĐPCM)

1 tháng 1 2018

Sửa đề bài : P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)

Ta có : \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

=> \(\dfrac{y+z+t}{x}=\dfrac{z+t+x}{y}=\dfrac{t+x+y}{z}=\dfrac{x+y+z}{t}\)

=> \(\dfrac{y+z+t}{x}+1=\dfrac{z+t+x}{y}+1=\dfrac{t+x+y}{z}+1=\dfrac{x+y+z}{t}+1\)=> \(\dfrac{y+z+t+x}{x}=\dfrac{z+t+x+y}{y}=\dfrac{t+x+y+z}{z}=\dfrac{x+y+z+t}{t}\)TH1: x + y + z + t # 0

=> x = y = z = t

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)

P = 1 + 1 + 1 + 1 = 4

TH2 : x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(t + x)

z + t = -(x + y)

t + x = -(y + z)

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{-\left(z+t\right)}{z+t}=\dfrac{-\left(t+x\right)}{t+x}=\dfrac{-\left(x+y\right)}{x+y}=\dfrac{-\left(y+z\right)}{y+z}\)

P = (-1) + (-1) + (-1) + (-1)

P = -4

Vậy ...

27 tháng 8 2019

Ta có:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.\)

\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0.\)

\(\Rightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{x}{a}=\frac{y}{b}\end{matrix}\right.\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 11 2017

Ta có: 2x=4y=3z

\(\frac{a+b-c}{6}=\frac{b+c-a}{10}=\frac{c+a-b}{2}=\frac{a}{4}=\frac{b}{8}=\frac{c}{6}\)

\(\Rightarrow\frac{2ãx}{4}=\frac{4by}{8}=\frac{3cz}{6}=\frac{ax}{2}=\frac{by}{2}=\frac{cz}{2}\)

\(\Rightarrowãx=by=cz\)

24 tháng 11 2017

dòng thứ hai mk ko hiểu !

24 tháng 8 2015

+)Vì x<y

Suy ra a/b<c/d

Suy ra a.b+a.d<b.c+b.a

Suy ra a.(b+d)<b.(c+a)

Suy ra a/b<c+a/b+d

Suy ra a/b<c+a/b+d<c/d

Suy ra x<z<y