K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

\(B=\dfrac{1}{4}+\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{19}\right)\)

\(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}>\dfrac{1}{9}+\dfrac{1}{9}+...+\dfrac{1}{9}\) nên \(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}>\dfrac{5}{9}>\dfrac{1}{2}\).

\(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{19}>\dfrac{1}{19}+\dfrac{1}{19}+...+\dfrac{1}{19}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{19}>\dfrac{10}{19}>\dfrac{1}{2}\).

\(\Rightarrow B>\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{2}>1\)

\(\Rightarrow B>1\)

3 tháng 5 2017

B=\(\dfrac{1}{4}+\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{19}\right)>\dfrac{1}{4}+15nhân\dfrac{1}{20}\)

B>\(>\dfrac{1}{4}+\dfrac{15}{20}=\dfrac{1}{4}+\dfrac{3}{4}=1\)

Suy ra B>1

5 tháng 4 2017

a, Ta có: \(\dfrac{32}{37}>\dfrac{32}{54}>\dfrac{19}{54}\Rightarrow\dfrac{32}{37}>\dfrac{19}{54}\)

b, Ta có: \(\dfrac{18}{53}>\dfrac{18}{54}=\dfrac{1}{3}\Rightarrow\dfrac{18}{53}>\dfrac{1}{3}\left(1\right)\)

\(\dfrac{26}{78}=\dfrac{1}{3}\left(2\right)\)

Từ (1) và (2) ta suy ra \(\dfrac{18}{53}>\dfrac{26}{78}\)

c, Ta thấy: \(\dfrac{25}{103}< \dfrac{25}{100}=\dfrac{1}{4}\left(1\right)\)

\(\dfrac{74}{295}>\dfrac{74}{296}=\dfrac{1}{4}\left(2\right)\)

Từ (1) và (2) ta suy ra \(\dfrac{25}{103}< \dfrac{74}{295}\)

5 tháng 4 2017

tick cho mk vớihaha

27 tháng 4 2017

A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)

A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)

A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)

A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)

A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)

A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)

A = \(\dfrac{4}{3}.\dfrac{33}{68}\)

A = \(\dfrac{11}{17}\)

27 tháng 4 2017

1/3.(1/2.5+1.5.8+1/8.11+...+1/65.68)

=1/3.(1/2-1/5+1/5-1/8+1/8-1/11+...+1/65-1/68)

=1/3(1/2-1/68)

=1/3.33/68

=11/68

nhớ theo dõi mik nha

4 tháng 5 2017

Gọi \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)\(S\)

\(S=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\\ S>\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{100\cdot101}\\ S>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ S>\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{5}\)

Vậy \(S>\dfrac{1}{5}\)(đpcm)

7 tháng 3 2017

22 là thế nào đấy bạn?

7 tháng 3 2017

2 mủ 2 đấy bn

22 tháng 3 2017

a)

ta có:

\(\left\{{}\begin{matrix}\dfrac{b-a}{b-a}=1..\forall a\ne b\\\dfrac{b-a}{a.b}=\dfrac{1}{a}-\dfrac{1}{b}..\forall a,b\ne0\end{matrix}\right.\)(*)

\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+..+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(\left\{{}\begin{matrix}a=3n-1\\b=3n+2\end{matrix}\right.\)\(\Rightarrow b-a=3..\forall n\)

Thay (*) vào dãy A

\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-....+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)=\dfrac{1}{3}\left(\dfrac{3n+2-2}{2.\left(3n+2\right)}\right)=\dfrac{n}{6n+4}=VP\rightarrow dpcm\)

B) tương tự

25 tháng 3 2017

Cảm ơn bạn

22 tháng 3 2017

tính nhanh hay là tính bt bn ?

22 tháng 3 2017

Là tính nhanh.Giúp mình với!khocroi

25 tháng 7 2017

Bài 1:

\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)

\(\Leftrightarrow\dfrac{1}{5}A=\dfrac{1}{5^2}+\dfrac{1}{5^3}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{100}}\)

Lây vế trừ vế, ta được:

\(A-\dfrac{1}{5}A=\dfrac{4}{5}A\)

\(\dfrac{4}{5}A=\dfrac{1}{5}-\dfrac{1}{5^{100}}\)

\(\Leftrightarrow A=\dfrac{\dfrac{1}{5}-\dfrac{1}{5^{100}}}{\dfrac{4}{5}}=\dfrac{\dfrac{1}{5}.\left(1-\dfrac{1}{5^{99}}\right)}{\dfrac{1}{5}.4}=\dfrac{1-\dfrac{1}{5^{99}}}{4}\)

Vậy \(A=\dfrac{1-\dfrac{1}{5^{99}}}{4}\).

Chúc bạn học tốt!

25 tháng 7 2017

Bài 2:

Có:

\(B=3+3^3+3^5+...+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\)

\(\Leftrightarrow B=273+...+3^{1986}.273\)

\(\Leftrightarrow B=273\left(1+...+1986\right)\)

\(273⋮13\)

Nên \(B=273\left(1+...+1986\right)⋮13\)

Vậy \(B⋮13\)

Lại có:

\(B=3+3^3+3^5+...+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\)

\(\Leftrightarrow B=2460+...+3^{1984}.2460\)

\(\Leftrightarrow B=2460\left(1+...+3^{1984}\right)\)

\(2460⋮41\)

Nên \(B=2460\left(1+...+3^{1984}\right)⋮41\)

Vậy \(B⋮41\).

Chúc bạn học tốt!