Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A - A = 2A = 1 + 3 + 32 + 33 + ... + 3n+1 - 1 - 3 - 32 - 33 - ... - 3n
2A = 3n+1 - 1
A = (3n+1 - 1):2
A = 3280
=(3n+1 - 1):2 = 3280
3n+1 - 1 = 3280.2
3n+1 - 1 = 6560
3n+1 = 6560 + 1
3n+1 = 6561
3n+1 = 38
=> n + 1 = 8
n = 7
A = 1+3+32+..+3n
3A = 3+32+...+3n+1
3A - A = (3+32+...+3n+1) - (1+3+32+..+3n)
3A - A = 3n+1-1
2A = 3n+1-1
A = (3n+1-1) : 2
A = 3280
A = (3n+1-1) : 2 = 3280
3n+1-1 = 3280.2
3n+1-1 = 6560
3n+1 = 6561
38 = 6561
=> 38 = 3n+1
n+1 = 8
=> n = 8-1
n = 7
Tớ làm vậy ko biết có đúng ko, có sai sửa giùm nha
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
a , Ta có :
M = 3 + 32 + ... + 3100
= 3 . ( 1 + 3 ) + ... + 399 . ( 1 + 3 )
= 3 . 4 + ...... + 399 . 4
= 4 . ( 3 + ... + 399 ) \(⋮\)4
a , M = 3 + 32 + ... + 3100
= 1 . ( 3 + 32 ) + ... + 398 . ( 3 + 32 )
= 1 . 12 + ... + 398 . 12
= 12 . ( 1 + ... + 398 ) \(⋮\)12
4n+3 chia hết cho 2n+1 (1)
Mà 2(2n+1) chia hết cho 2n+1 \(\Rightarrow\)4n+2 chia hết cho 2n+1 (2)
Từ (1)và(2) \(\Rightarrow\)(4n+3) - (4n+2) chia hết cho 2n+1\(\Rightarrow\)1 chia hết cho 2n+1
\(\Rightarrow\)2n+1 \(\in\)Ư(1) = {1}
Vậy n \(\in\){0;-1}
A)\(M=1+3+3^2+...+3^9\)\(\Rightarrow3M=3+3^2+3^3+...+3^{10}\)\(\Rightarrow3M-M=\left(3+3^2+3^3+...+3^{10}\right)-\left(1+3+3^2+...+3^9\right)\)
\(\Rightarrow2M=3^{10}-1\)\(\Rightarrow2M+1=3^{10}\)\(\Rightarrow n=10\)
B) \(A=1+4^2+...+4^{99}\)\(\Rightarrow4A=4+4^3+4^4+...+4^{100}\)\(\Rightarrow4A-A=\left(4+4^3+4^4+...+4^{100}\right)-\left(1+4^2+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}+4-4^2-1\Rightarrow3A=4^{100}-13\Rightarrow3A+13=4^{100}\Rightarrow n=100\)
1, xy-2x+3y=9
<=> xy-2x+3y-9=0
<=> x(y-2) + 3(y-2)=0
<=>(y-2)(x+3)=0
<=>+) y-2=0 <=> y=2
+)x+3=0<=>x=-3
Ta có: \(B=3+3^2+3^3+3^4+...+3^n\)
\(\Leftrightarrow3B=3^2+3^3+3^4+...+3^n+3^{n+1}\)
\(\Leftrightarrow3B-B=3^{n+1}-3\)
\(\Leftrightarrow2B=3^{n+1}-3\)
mà \(B=3280\) \(\Rightarrow2B=2.3280=6560\)
\(\Rightarrow3^{n+1}-3=6560\)
\(\Leftrightarrow3^{n+1}=6560+3=6563\)
\(\Leftrightarrow3^n.3=6563\)
\(\Leftrightarrow3^n=6563:3=\frac{6563}{3}\)
\(\Rightarrow n\notin N\)
Vậy: ko tìm được \(n\in N\)
@Phạm anh quyên - Bạn xem đề bài có vấn đề gì ko, vì ko tìm được kết quả