Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B = ( 3 . 1 + 3 . 3 ) + ( 3\(^3\). 1 + 3\(^3\). 3 ) + ... + ( 3\(^{89}\). 1 + 3\(^{89}\). 3 )
B = 3 . 4 + 3\(^3\). 4 + ... + 3\(^{89}\). 4
B \(⋮\)4
Caau b,c làm tương tự ( câu c ghép 3 số lại với nhau )
a,B=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\))
B=\(12\times3^1+12\times3^2+...+12\times3^{88}\)
B=\(12\left(3^1+3^2+...+3^{88}\right)\)
Vì 12\(⋮\)4 nên B\(⋮\)4
a)B có 10
B=(3+3^2)+(3^3+3^4)+....+(3^9+3^10)
B=3.(1+3)+3^3.(1+3)+....+3^9.(1+3)
B=4.(3+3^3+....+3^9) chia hết cho 4
Vậy B chia hết cho 4
b)B=
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4