K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2023

B=3+3²+3³+..... +3¹00 

B=3²+3³+3⁴+... 3¹00+3

B=3²(1+3+3²) +... +3 98(1+3+3²) +3

B=3²•13+... +3 98•13+3

=) 3²•13+3 98•13 chia hết cho 13

=) Số dư là 3

 

Bạn tham khảo

Bài 1: Câu hỏi của song ngư xấu xí - Toán lớp 6 - Học toán với OnlineMath

Bài2Câu hỏi của kiều thanh thủy - Toán lớp 6 - Học toán với OnlineMath

Bài3Câu hỏi của Phạm Minh Tuấn - Toán lớp 6 - Học toán với OnlineMath

Bài4Câu hỏi của Phạm Lê Nam Bình - Toán lớp 6 - Học toán với OnlineMath

9 tháng 4 2018

ko biết cứt

9 tháng 4 2018

a )  \(A=2^0+2^1+2^2+...+2^{2010}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2011}\)

\(\Rightarrow2A-A=\left(2+...+2^{2011}\right)-\left(2^0+2^1+...+2^{2010}\right)\)

\(\Rightarrow2A-A=2^{2011}-2^0\)

\(\Rightarrow A=2^{2011}-1\)

b ) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3B-B=\left(3+3^2...+3^{2011}\right)-\left(1+3+...+3^{2010}\right)\)

\(\Rightarrow2B=3^{2011}-1\)

\(\Rightarrow B=\frac{3^{2011}-1}{2}\)

Chúc bạn học tốt !!! 

27 tháng 2 2016

Bài 2 : a) Ta có :

\(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)

=> \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2014}+3^{2015}\right)\)

=> \(S=4+3^2\left(1+3\right)+...+3^{2014}\left(1+3\right)\)

=> \(S=4+3^2.4+3^4.4+...+3^{2014}.4\)

=> \(S=4\left(3^2+3^4+...+3^{2014}\right)\)

Vì 4 chia hết cho 4 => S chia hết cho 4

b) \(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)

=> \(S=\left(1+3+3^2+3^3\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)

=> \(S=40+3^4.40+3^8.40+...+3^{2012}.40\)

=> \(S=40\left(1+3^4+3^8+...+3^{2012}\right)\)

Vì 40 chia hết cho 10 => S chia hết cho 10 => S có tận cùng là 0

27 tháng 2 2016

S = 1 + 3 + 32 + 33 + ..... + 32014 + 32015

=> 3S = 3 + 32 + 33 + 34 + .... + 32015 + 32016

=> 3S - S = 32016 - 1

=> S = ( 32016 - 1 ) : 2

Ta có 32016 = ( 34 )504 = 81504 = .......1

=> S = ( ......1 - 1 ) : 2 = ......0 : 2 = ......5

Vậy chữ số tận cùng của S là 5

10 tháng 12 2019

A = 50 + 51 + 52 + 53 +...+5100 ( cs 101 so)

A = 50 +51 +( 52 +  53 + 54 )+( 55+56+57)+...+( 598 + 599 + 5100 )

A = 6+ 52.31 +55.31+...+598.31 chia 31 du 6

:)