K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2015

a, S = 5+52+53+.....+52006

5S = 52+53+54+....+52007

4S = 5S - S = 52007-5

=> S = \(\frac{5^{2007}-5}{4}\)

b, Nếu chia hết cho 156 thì mik làm được còn 126 thì chịu

1 tháng 9 2015

Trong câu hỏi tương tự có đó bn.

**** cho mình đi.

n^2 - 1 = (n + 1)(n - 1) 
Vì n > 2 nên n+1 và n-1 đều lớn hơn 1 ---> n^2 - 1 luôn luôn là hợp số, với mọi n > 2 (n thuộc N) 
---> n^2 - 1 và n^2 + 1 không thể đồng thời là số nguyên tố.

Tick nhé 

7 tháng 11 2017

F = 1 + 3 + 32 + 33 + ..... + 399

F = 3+ 31 + 32 + 33 + ... + 399

F = ( 30 + 31 + 3+ 33 ) + ( 34 + 3+ 36 + 37 ) + .... + (  396 + 397 + 398 + 399 )

F = 30( 1 + 31 + 3+ 33 ) + 34 ( 1 + 31 + 32 + 34 ) + ..... + 396( 1 + 31 + 32 + 3)

F = 3* 40 + 34 * 40 +....... + 396 * 40

F = 40 ( 30 + 34 + ..... + 396 )

có 40 chí hết cho 40

=> F chia hết cho 40

k đúng cho mk cả 2 lần trả lời nha

7 tháng 11 2017

E = 109 + 108 + 107

E = 107( 102 + 10 + 1 )

E = 107 * 111

E = 106 * 10 * 111

E = 106 * 5 * 2 * 111

E = 106 * 5 * 222

có 222 chia hết cho 222 => 106 * 5 * 222 chia hết cho 222

=> 109 + 108 + 10chí hết cho 222

23 tháng 10 2017

a) Vì 11^n =............1 ( bằng 1 số luôn có tận cùng là 1 )

=> 11^9+11^8+11^7+...........+1 = .....1 +........1+........+1 ( có tất cả 9 số 11 và 1 số 1 )

=> A sẽ có tận cùng là 0 ( vì có tất cả 10 số có tận cùng là 1)

=> A chia hết cho 5 ( dựa vào dấu hiệu nhận biết 1 số chia hết cho 5 )

b) B=2+2^2+.......+2^60

       =( 2+2^2)+(2^3+2^4)+........+(2^59+2^60)

       = 2x(1+2)+2^3+(1+2)+.......+2^59x(1+2)

        = 2x3+2^3x3+............+2^59x3

       =  3x ( 2 + 2^3 + ...........+ 2^59 )

=>B chia hết cho 3

Can you do next post ?

23 tháng 10 2017

a,64 b,62

14 tháng 9 2016

Ta có :

\(C=4+2^2+2^3+...+2^{2016}\)

\(\Rightarrow C-4=2^2+2^3+...+2^{2016}\)

\(\Rightarrow2\left(C-4\right)=2^3+2^4+...+2^{2017}\)

\(\Rightarrow2\left(C-4\right)-\left(C-4\right)=\left(2^3+2^4+...+2^{2017}\right)-\left(2^2+2^3+...+2^{2016}\right)\)

\(\Rightarrow C-4=2^{2017}-2^2\)

\(\Rightarrow C=2^{2017}\)

=> Đpcm

14 tháng 9 2016

C= 4 + 2^2 + 2^3 + 2^4 +.....+2^2016

Đặt A=  2^2 + 2^3 + 2^4 +.....+2^2016

=>2A= 2^3 + 2^4 +2^5.....+2^2017

=>2A-A= 2^2017 - 2^2 = 2^2017 - 4

=>C= 4+A= 4+2^2017 - 4

=>C=2^2017

Vậy C là lũy thừa của 2 

mong bạn sẽ tích cho mình (nếu đúng)leuleuvui

 

 

20 tháng 3 2017

Vì (a^2 + b^2 ) chia hết cho 3 nên a^2 chia hết cho 3 , b^2 chia hết cho 3 , 
Mà a^2 chia hết cho 3 nên a cũng chia hết cho 3 , b^2 chia hết cho 3 nên b cũng chia hết cho 3 
Vậy a và b cùng chia hết cho 3

15 tháng 10 2017

Ta co:   B= 1 + 3 +32 + 33 + ....... + 399

                  = (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3) 

               = (1 + 3)(1 + 32 +34 + ......... + 398)

               = 4(1 + 32 +34 + ........... + 398\(⋮\)

    Vay B \(⋮\)

   k cho mk nha

15 tháng 10 2017

B=(1+3)+(32+33)+...+(398+399)

  =(1+3)+32(1+3)+...+398(1+3)

  =4+32.4+.....+398.4

  =4.(1+32+...+398)

vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)

21 tháng 2 2020

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử

\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp

\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)

\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)