Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2+4y^2-4xy=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Thay \(x=18;y=4\) ta được:
\(\left(x-2y\right)^4=\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=100\)
b, \(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
Thay \(x=6;y=-8\) ta được:
\(\left(2x-y\right)^3=\left(2.6+8\right)^3=\left(12+8\right)^3=20^3=8000\)
c, \(\left(a+b\right)^3+\left(a-b\right)^3-6ab^2\)
\(=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-6ab^2\)
\(=2a^3\)
Thay \(a=1;b=2008\) ta được:
\(2a^3=2.1^3=2\)
a,\(x^5-x^4-x^4+x^3+2x^3-2x^2-2x^2+2\)2x-2x+2\(x^4\left(x-1\right)-x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)+2\left(x-1\right)\)
=\(\left(x^4-x^3+2x^2-2x+2\right)\left(x-1\right)\)
b,
bạn chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/60436537466.html
\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)
\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)
\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)
\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)
\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)
\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)
A = x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 13 - 3xy.0
= 1 - 0 = 1
Vậy A = 1
b) B = x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1 + 0 = 1
Vậy B = 1
M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )
= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2
= 1
Vậy M = 1
d) x + y = 2
⇔ ( x + y )2 = 4
⇔ x2 + 2xy + y2 = 4
⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )
⇔ 2xy = -6
⇔ xy = -3
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 23 - 3.(-3).(2)
= 8 + 18 = 26
1) +) ta có : \(A=2x^2+9y^2-6xy-6x-12y+2018\)
\(=x^2+9y^2+4-6xy+4x-12y+x^2-10x+25+1989\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)
\(\Rightarrow A_{min}=1989\) khi \(x=5;y=\dfrac{7}{3}\)
câu này mk sửa đề chút nha
+) ta có : \(B=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
\(\Rightarrow B_{max}=5\) khi \(y=2;x=3\)
2) a) ta có : \(x^2+y^2=5=\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\)
\(\Leftrightarrow xy=2\)
ta có : \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=9\)
b) ta có : \(x^2+y^2=15=\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\)
\(\Leftrightarrow xy=-5\)
ta có : \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=5^3+3\left(-5\right).5=50\)